博碩士論文 983208006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.148.107.131
姓名 陳玄宗(Xuan-Zong Chen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力
(Gap filling capability improvement via magnetic field simulation assisted on long throw sputtering PVD of magnet designs and arrangements)
相關論文
★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究
★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析
★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響
★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證
★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究★ 以RTP硒化法探討CIS薄膜及元件特性之研究
★ 局域性表面電漿共振效應應用於OLED出光增益之研究★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究
★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿
★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究★ 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 此研究利用簡單的方法在固定的深寬比中改進填洞效果,不但成本低廉而且有效改善階梯覆蓋率和增加沉積速率,在未來可應用於3DIC或是半導體產業上效果顯著。
利用有限體積法模擬PVD磁場的磁場分布,採用長距離沉積法加入固定高度的連接器和側邊磁鐵,在加入側邊磁鐵可以增加電子行走距離,有效增加與離子間碰撞機會,側邊磁鐵由三個一組共44組,磁鐵強度約為5500高斯,對於長距離的沉積製程中 ,填洞的腔體增加高度120mm,腔體旁邊圍繞著44組磁鐵。
側邊磁鐵極性跟上方磁鐵中最外圈磁鐵同向,以達到將磁力線拘束在腔體中心的效果。經由此設計,可以明顯改善階梯覆蓋率45%以及增加40%的沉積速率,此研究可應用於3DIC。
摘要(英) This study used Finite Volume Method to simulate the magnetic profile of PVD (physical vapor deposition) chamber.. From this study, it can be applied to different kinds of target designs. The side magnets consist of a total of 44 sets for one supporter around the chamber adaptor. Each set has three magnets. Each magnet with the magnetic field strength is 5,500 Gauss. For this long throw PVD, adaptor of gap filling chamber has 120 mm height and the 44 sets of magnets are around to adaptor. The polarity of side magnets is the same as the top magnets of the chamber. These magnets can provide very effective and beneficial to the increase of electron mobility and collision frequency with ions. It shows a significant improvement of step coverage on both side walls up to 45%. The deposition rate increases 40%. This study uses a simple method to apply to 3DIC gap filling capability for an increase of aspect (AR). The improvement from this long throw sputtering PVD with side magnets design around the adaptor can provide not only for low cost target design but also provide a very effective gap filling capability with higher deposition rate for 3DIC application
關鍵字(中) ★ 物理氣相沉積
★ 深寬比
★ 三維晶片
★ 磁場
★ 沉積速率
關鍵字(英) ★ deposition rate
★ magnetic field
★ aspect ratio
★ 3DIC
★ PVD
論文目次 第一章 緒論 ................................................... 1
1-1 研究目的與動機 .................................................... 1
1-2 文獻回顧 .......................................................... 3
第二章 理論背景與介紹 ......................................... 6
2-1 電漿原理 ......................................................... 6
2-1-1 輝光放電 .................................................... 8
2-1-2 離子表面反應 .............................................. 11
2-2 物理氣相沈積法(PVD) ............................................. 13
2-2-1 電漿濺鍍法原理 ............................................. 14
2-2-2 直流磁控濺鍍( DC Magnetron Sputtering ) .................... 14
2-2-3 射頻濺鍍(Radio-Frequency Sputtering Deposition) ............ 17
2-2-4 離子束濺鍍法(Ion Beam Sputtering Deposition) .............. 20
2-2-5 熱蒸鍍法(Thermal Evaporation Deposition) ................... 20
2-3 磁場模組方程式 .................................................. 21
第三章 模擬與實驗架構 ........................................ 24
3-1 模擬軟體簡介 ..................................................... 24
3-2 研究架構 ......................................................... 27
3-3 實驗架構 ........................................................ 29
3-4 實驗機台 ......................................................... 29
第四章 結果與討論 ............................................ 33
4-1 模擬結果 ........................................................ 33
4-1-1 連接器高度之模擬 .......................................... 33
4-1-2 磁鐵間距模擬 .............................................. 36
4-1-3 磁場分布之模擬 ............................................. 38
4-2 製程結果 ........................................................ 48
第五章 結論 .................................................. 64
5-1 結論 ............................................................ 64
參考文獻 ..................................................... 65
參考文獻 [1] Jang, D. M. ; Ryu, C.; Lee, K. Y. ; Cho, B. H.; Kim, J. ; Oh, T. S.; Lee, W. J. ; Yu, J. “Development and evaluation of 3-D SiP with vertically interconnected through silicon vias (TSV)“, Electronic Components and Technology Conference 57th, Nevada,USA , pp. 847-852, May 2007,
[2] K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, and D. P. Barkey, “High-aspect-ratio copper-via-filling forthree -dimensional chip stacking,” J. Electrochem. Soc. , vol 152, pp. 173–177 , 2005.
[3] R. Beica, C. Sharbono, T. Ritzdorf, “Through Silicon Via Copper electrodeposition for 3D Integration” Proc. Electronic Components and Technology Conference, Florida, USA , pp. 577-583, May 2008.
[4] O. Luhna,, C. Van Hoof , W. Ruythooren, J.-P. Celis, “Barrier and seed layer coverage in 3D structures with different aspect ratios using sputtering and ALD processes” Microelectronic Engineering ,vol 85, pp.1947–1951,2008.
[5] C. K. Hu and J. M. E. Harper, “Copper interconnection and reliability”, MaterialsChemistry and Physics , vol 52, pp.5-12,1998.
[6] D.C. Perng, J.B. Yeh , K.C Hsu: "Grain Boundaries Stuffed Ru Film for Advanced Cu Diffusion Barrier". Proceedings of the Fifth International Symposium on Control of Semiconductor Interfaces (ISCSI) Tokyo, Japan, pp.173-176 , Nov 2007.
[7] E. Beyne, “3D System Integration Technologies” in Proceedings of the International Symposium on VLSI Technology, Systems and Applications, Hsinchu, Taiwan, pp. 19–27, April 2006 .
[8] H. Yonemuraa, S. Natsukob, J. Suyamab, S. Yamadaa, “Orientation and organization of gold nanorods on a substrate using a strong magnetic field: Effect of aspect ratio” J. Photochemistry and Photobiology , vol 220, pp. 179–187, 2011.
[9] H.Y. Song, Y.H. Choi . “ Effect of time-varying axial magnetic field on high aspect ratio contact hole etching” Thin Solid Films , vol 435 , pp.247–251 2003.
[10] R. Martin, H. Finlay “ Enhanced deposition of high aspect ratio aerosols in small airway bifurcations using magnetic field alignment” Aerosol Science ,vol 39 , pp. 679-690 , 2008.
[11] A. Furuya, S. Hirano, “Target magnetic-field effects on deposition rate in rf magnetron sputtering” J. Appl. Phys. ,vol 68, pp. 304-311, 1990.
[12] Y.J. Kim , Kyung S. Shin, S. H. , Choi, G. Han, “High deposition rate microcrystalline silicon films prepared by magnetic Mirror assisted RF-PECVD” Current Applied Physics, vol 10, pp.354–356, 2010.
[13] W. Makoto Nakamura, H. Matsuzaki, H. Sato, Y. Kawashima, “ High rate deposition of highly stable a-Si:H films using multi-hollow discharges for thin films solar cells” Surface & Coatings Technology , vol 205, pp.241–245, 2010.
[14] T. Goto , T. Matsuoka,T. Ohmi. “ Rotation magnet sputtering: Damage-free novel magnetron sputtering using rotating helical magnet with very high target utilization“ Journal of Vacuum Science & Technology ,vol 27, pp. 653-659, 2009 .
[15] T. Takahashi, N. ikeda , M. nao “ Improvement of toroidal plasma (tp) type sfwering for depositing co-cr fims on plasma-free sbstrates“ IEEE transactions on magnetics, vol 26 , pp. 1611-1613 ,1990.
[16] K. Ichihara, K. Tateyama, R. Sakai, T. Ishigami “ Composition Change in
Magnetron-Sputtered Fe–Zr–N Film with Erosion of Fe–Zr Alloy Target “ IEEE transactions on magnetics, vol 33, pp. 4449-4453,1997 .
[17] A. Furuya, S. Hirano “Target magnetic-field effects on deposition rate in rf magnetron sputtering“ J. Appl. Phys. ,vol 68, pp. 304-311, 1990.
[18] N. I-Ienis, A. Torrado and J. M. Bmndkrfin “ Magnetic Design of a Cathodic Arc and Sputtering Polyvalent Source for Vapour Deposition “IEEE Transactions On Magnetics, vol. 30, pp. 4683-4685, 1994.
[19] P. J Martin,., “ Filtered Arc Evaporation,” Surface. Coating. Technology, vol 9, pp. 51-58, 1993.
[20] N. N Iosad, et al , “Reactive Magnetron Sputter-Deposition of NbN and (Nb,Ti)N Films Related to Sputtering Source Characterization and Optimization,” J. Vac. Sci. Technol., vol. 19, pp.1840-1845, 2001.
[21] M. Kashiwagi, S. Ido, “ Computational analyses of a magnetron sputtering system with a ferrromagnetic target” J. Vac. Sci. Technol , vol. 53 , pp. 33-36 ,1999 .
[22] Sakai Natsukob, Junichi Suyamab, Sunao Yamadaa, Hiroaki Yonemuraa,“Orientation and organization of gold nanorods on a substrate using a strong magnetic field: Effect of aspect ratio” J. Photochemistry and Photobiology A: Chemistry ,vol 220, pp. 179–187 ,2011.
[23] H.i Matsuzaki et al, “ High rate deposition of highly stable a-Si:H films using multi-hollow discharges for thin films solar cells” Surface & Coatings Technology ,vol 205, pp. 241–245,2010.
[24] John L. Voseen ,Werner Kern , Glow Discharge Processes, John Wiley & Sons, 1980.
[25] M. Shao, C. N. Feng , R. G. Bohn, , “RF Sputtered CdS/CdTe Solar Cells: Effects of Magnetic Field, RF Power, Target Morphology, and Substrate Temperature,” First WCPEC, Hawaii , pp 111-114, May 1994.
[26] P. L. Dimitris , J. E Demetre , “Two-Dimensional Simulation of Polysilicon Etching with Chlorine in a High Density Plasma Reactor,” IEEE Trans. on Plasma Sci., vol 23, pp. 573-580, 1995.
[27] N. G Elistratov, K. A Titov, A. M Zimin, “Investigation of Low Pressure Discharge Generated by Magnetron Plasma Device,” IEEE XVIIth International Symposium on Discharges and Electrical Insulation in Vacuum, Berkeley,, pp. 707-711,1996.
[28] C. Engström , T. Berlind, J. Birch, L. Hultman, I. P. Ivanov, S. R.Kirkpatrick, “Design, Plasma Studies, and Ion Assisted Thin Film Growth in an Unbalanced Dual Target Magnetron Sputtering System with a Solenoid Coil,” J. Vac. Sci. Technol, vol 56 , pp. 107-113, 2000.
[29] Da Zhang, Phillip J. Stout, and Peter L. G. Ventzek , “ Plasma and process characterization of high power magnetron physical Vapor “ J. Vac. Sci. Technol ,vol . 21,2002 , pp. 265-273.
[30] 葉家豪, “以流體式數值模擬直流磁控電將濺鍍系統之磁場影響, ” 國立中央大學機械系研究所碩士論文,2010.
[31] 韓嘉緯, “ 以射頻磁控濺鍍方式鍍製含氫微晶矽薄膜並探討其應用於薄膜太陽能電池之可能性 ”國立中央大學光電科學研究所碩士論文,2007 .
指導教授 利定東(Tomi. Li) 審核日期 2011-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明