博碩士論文 943403033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.218.181.182
姓名 許嘉仁(Chia-Jen Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 移動式顆粒床過濾器進風口氣體流場行為與過濾性能之研究
(The study of gas flow behaviors and filtration performance of moving granular bed filter)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來先進國家均大量投入整合型氣化煤複循環發電系統的發展,但在這先進燃煤發電技術系統中,氣化過程所產生的合成氣含有大量粉塵有害物質,相對於燃煤發電系統中的渦輪機系統會產生腐蝕及破壞,因此發展過濾裝置為一重要解決方案,如此將可確保渦輪機系統壽命與發電效率的增加。
由於在顆粒床過濾器中,進風口的合成氣體分佈於過濾自由面上的均勻性,對於顆粒床的過濾行為而言相當重要。因此,在本論文中將利用所成功開發出的顆粒床過濾器,進行一系列氣體流場行為與過濾性能之研究。
針對氣體流場行為的研究,本論文將提出一新式合成氣進風口系統,並藉由一系列實驗分析的結果,進行系統設計之可行性評估找出最佳系統設計,並作為後續系統開發的依據。首先,在進風口系統中置入導流板裝置的設計構想,目的在改善原始進風口系統中氣體速度分佈不均的現象,並依據實驗所獲得之氣體流場速度分佈結果,定義氣體速度分佈標準差與過濾自由面速度差值的均勻性分析指標,並由其分析指標找出最佳進風口系統的設計參數。因此在固定中導流板長度230 mm與角度0°的條件下,並由不同上下導流板長度、角度與濾材質量流率變化(過濾程序之固定床與移動床模式)之實驗結果可知,在置入三組導流板設計於進風口系統中,將可提升進風口氣體流場速度分佈的均勻性,其中以固定床模式下的上下導流板長度200 mm與角度40°;移動床下的上下導流板長度170 mm與角度50° 的參數條件下能達到最佳的速度分佈均勻性,能使顆粒床濾材使用率增加,同時也將減少成本的支出。
而在顆粒床過濾性能研究上,依據氣體流場實驗結果,進行一系列冷性能過濾性能實驗,探討不同導流板設計、濾材質量流率與進口過濾自由面平均風速下的顆粒床過濾性能結果,並依據過濾效率與床體、兩過濾自由面壓降變化,找出最佳過濾性能實驗參數。而由過濾性能實驗結果可知,氣體流場的均勻性將有助於整體顆粒床過濾性能提升,同時由實驗結果也找出具最佳氣體流場均勻性與過濾效率的實驗參數條件為上下導流板長度170 mm、角度50°、濾材質量流率 600 g/min與進口過濾自由面平均風速40 cm/s。
最後,本論文研究中所得之成果,除將提供未來後續在建構連續式顆粒床過濾系統之相關週邊設備完整化外,也將給予高溫熱模過濾系統建構之參考,以加速整合型氣化煤複循環發電系統開發商業化。
摘要(英) The high-temperature gas cleanup system was designed in order to promote the performance of the IGCC power system. The IGCC system is considered the highest potential facility provide the important design for advanced coal-fired power plants. The high temperature syngas contains many dust particulates and fly ashes which should be filtrated before entering gas turbine. The moving granular bed filter used for filtration of the hot gas is one important apparatus under development. When the filter media move downwards through the vertical channel, the stagnation zones may form causing serious plugging problem. Putting a series of flow corrective elements has been demonstrated to be a good solution to diminish the stagnant zones and has been patented by our research group. However there still remain some systematic problems to commercialize the whole facility.
The design of the gas inlet component of the granular bed filter is important for achieving a uniform gas distribution and higher usage rate of the filter media. Consequently, this thesis tries to research gas flow behaviors and filtration performance by a series experiment of the gas velocity distribution, filtration efficiency and pressure drop to obtained better uniform distribution of gas velocity and filtration performances on a moving granular bed filter.
In study of gas flow behavior, the new gas inlet component design uses baffle devices in order to achieve a more uniform gas velocity distribution. The uniformity of the gas velocity distribution can be characterized by the standard deviation definitions and the differences in the mean velocities between the two filtration surfaces. The baffle lengths and angles affected the uniformity of gas velocity in inlet and filtration surfaces. The optimal experimental parameters were found by using different baffle lengths, angles and mass flow rate of filter media. The results of uniform gas velocity distributions were obtained by a series experiments. In condition of fixed middle baffle length 230 mm and angle 0°, the optimal experimental parameters were found which the baffle lengths 200 mm and angles 40° for fixed bed mode;the baffle lengths 170 mm and angles 50° for moving bed mode.
In study of filtration performances, the different baffle lengths and angles were studied according results of gas flow behavior in 3D cold filtration test. Moreover, the control factor includes the filtration superficial velocity, the mass flow rate of filter media, and the concentration of the dust gases in a series filtration experiment. The experiment results show that the uniform gas velocity distributions can help the higher filtration ecciciency in experiments of filtration performance. The optimal parmeters were the baffle lengths 170 mm, angles 50°, mass flow rate of filter media 600 g/min and the filtration superficial velocity 40 cm/s.
Furthermore, the results of gas flow behavior and filtration performance give important information about IGCC system that will be helpful for designing better models of moving granular bed filters in the future.
關鍵字(中) ★ 顆粒床過濾器
★ 氣體流場
★ 導流板
★ 過濾效率
★ 壓降
關鍵字(英) ★ pressure drop
★ gas flow behavior
★ baffle
★ filtration efficiency
★ Granular bed filter
論文目次 摘 要 I
ABSTRACT III
誌 謝 V
圖 目 錄 IX
表 目 錄 XII
符號說明 XIII
希臘符號 XIV
第一章 前言 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 研究動機與目的 7
1.4 論文章節架構 9
第二章 實驗設備與方法 14
2.1 氣體流場實驗設備與方法 14
2.1.1 移動式顆粒床過濾器 14
2.1.2 實驗濾材 15
2.1.3 導流進風口系統 15
2.1.4 實驗方法與步驟 16
2.1.4.1 進口平均風速定義 16
2.1.4.2 導流板長度與角度定義 17
2.1.4.3 量測分析截面定義 17
2.1.4.4 進風口與過濾自由面改善設計 17
2.1.4.5 氣體速度量測方法 18
2.1.4.6 濾材質量流率的量測 18
2.1.4.7 實驗操作參數 19
2.1.4.8 實驗步驟 20
2.1.5 氣體流場均勻性分析 20
2.1.5.1 流場均勻性指標 20
2.2 過濾性能實驗方法與設備 23
2.2.1 濾餅過濾與深層過濾機制 23
2.2.1.1 分離過濾機制 24
2.2.2 顆粒床過濾效率與壓降行為 27
2.2.3 實驗濾材與粉塵 30
2.2.4 三維冷性能過濾系統 30
2.2.5 實驗量測設備 33
2.2.6 實驗操作參數 34
2.2.7 實驗步驟 37
第三章 氣體流場實驗結果與討論 61
3.1 進風口氣體速度分佈外型 61
3.1.1 固定床模式 61
3.1.2 移動床模式 64
3.2 均勻性分析指標 67
第四章 過濾性能實驗結果與討論 107
4.1 不同導流板長度與角度對於過濾性能的影響 107
4.1.1 顆粒床過濾器壓降行為 107
4.1.2 顆粒床過濾器過濾效率 111
4.1.3 氣體流場均勻性對於顆粒床過濾性能影響 113
4.2 不同濾材質量流率與過濾性能的影響 115
4.2.1 顆粒床過濾器壓降行為 115
4.2.2 顆粒床過濾器過濾效率 118
4.3 不同進口過濾自由面平均風速與過濾性能的影響 119
4.3.1 顆粒床過濾器壓降行為 119
4.3.2 顆粒床過濾器過濾效率 120
第五章 結論 137
第六章 未來工作與建議 142
參考文獻 144
附錄 一 粉塵灰粒樣品採集方法 160
個人簡歷 166
著作目錄 167
參考文獻 Aguiar, M. L. and Coury, J.R., 1996, Cake formation in fabric filtration of gases, Ind.Eng. Chem. Res., 35, pp. 3673-3679.
Ahmadi, G. and Smith, D. H., 2002, Gas flow and particle deposition in the hot-gas filter vessel of the Pinon Pine project, Powder technology, 128, pp. 1-10.
Andries, J., Scarlett, B., Bernard, J. G., Zevenhoven, C. A. P., van de Leur, R. H. M., Ennis, B., deHann, P. H., Hogervorst, A. C. R., and Nikolic, M., 1987,“Closed loop controlled integrated hotgas clean up,” Final Report EC Contract EN3F-0028-NL(GDF), Delft University of Technology.
Avco Co., 1969, Evaluation of granular bed devices. Final Report, Contract No.PH-86-67-51, Phase III, AVATD-0107-67-RR, U.S. Department of Commerce,Publication PB 185561, June 1969. Submitted by Advanced Chemical Process Section, Avco Applied Technology Divison, Lowell, Massachusetts 01851, pp.8–9, 48, 67–68. USA.
Bai, J. C., Wu, S. Y. and Lee, A. S., 2006, Dust collection efficiency analysis in a two-dimensional circulating granular bed, J. Air and Waste Manage. Assoc., 56, pp. 684-694.
Bai, J. C., Wu, S. Y., Lee, A. S. and Chu, C. Y., 2007, Filtration of dust in a circulating granular bed filter with conical louver plates (CGBF-CLPs), Journal of
Hazardous Materials, 142, pp. 324-331.
Blasewitz, A. G. and Judson, B. F., Filtration of radioactive aerosols by glass fiber. Chem. Eng. Progress., 51(1), 6J-11J, 1955.
Boehm, L. and Jordan, S., On the filtration of sodium oxide aerosols by multilayer sand bed filters. J. Aerosol Sci., 7(4), 311-318, 1976.
Boller, M. A. and Kavanaugh, M. C., Particle characteristics and headloss increase in granular media filtration, Water Research, 29(4), pp. 1139-1149, 1995.
Brown, R. C., Shi, Huawei, et al., 2003, “Similitude study of a moving bed granular filter,” Powder technology, 138, pp.201-210.
Chen, Y. S. and Hsiau, S. S., 2009a, “Cake formation and growth in cake filtration,”Powder Technology, Vol. 192, pp. 217-224.
Chen, Y. S. and Hsiau, S. S., 2009b, “Influence of filtration superficial velocity on cake compression and cake formation,” Chem. Eng. Proc., Vol. 48 pp. 988-996.
Chen, Y. S., Hsiau, S. S., Lai, S. C., Chyou, Y. P., Li, H. Y. and Hsu, C. J., 2009, Filtration of dust particulates with a moving granular bed filter, Journal of
Hazardous Materials, 171, pp. 987-994.
Chen, J., Akiyama, T., Nogami, H. and Yagi, J. I., Behavior of powders in a packed bed with lateral inlets. ISIJ International, 34, 133-139, 1994.
Cheng, Y.H. and Tsai, C.J., 1998, Factors influencing pressure drop through of a dust cake during filtration, Aerosol Sci. Tech., 29, pp. 315-328.
Choi, J. H., Seo, Y. G. and Chung, J. W., 2001, Experimental study on the nozzle effect of the pulse cleaning for the ceramic filter candle, Powder Technology, 114, pp. 129-135.
Chou, C. S., Lo, W. F., Smid, J., Kuo, J. T. and Hsiau, S. S., 2003, The flow patterns and stresses on the wall in a symmetric louvered-wall moving granular filter bed, Powder Technology, 131(2-3), pp. 166-184.
Chou, C. S. and Yang, T. L., 2005, Flow patterns and wall stresses in a moving granular filter bed with a curved symmetric louvered wall, Advanced Powder Technology, 16(5), pp. 451-471.
Chou, C. S. and Chen, S. H., 2007, Moving granular filter bed of quartz sand with louvered-walls and flow-corrective inserts, Powder Technology, 172(1), pp. 41-49.
Chou, C. S., Lee, A. F. and Yeh, C. H., 2007, Gas-solid flow in a two-dimensional cross-flow moving granular filter bed with a symmetric boundary, Particle & Particle Systems Characterization, 24(3), pp. 210-222.
Chuah, T. G., Withers, C. J. and Seville, J. P., 2004, Prediction and measurements of the pressure and velocity distributions in cylindrical and tapered rigid ceramic filters, Separation and Purification Technology, 40, pp.47-60.
Cicero, D. C., Dennis, R. A., Geiling D. W. and Schmidt, D. K., 1994, “Hot-gas cleanup for coal-based gas turbines,” ASME Mechanical Engineering, pp. 70-75.
Coury, J. R., Thambimuthu, K. V. and Clift, R., Capture and rebound of dust in granular bed filters. Powder Technol. 50, 253-265, 1987.
Darakchiev, R. and Dodev, C., 2002, Gas flow distribution in packed columns, Chemical Engineering and processing, 41, pp.385-393.
Darcy, H., Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris (1856).
Dascalaki, E., Santamouris, M., Argiriou, A., Helmis, C., Asimakopoulos, D. N., Papadopoulos, K. and Soilemes, A., 1996, On the combination of air velocity and flow measurements in single sided natural ventilation configurations, Energy and Buildings, 24, pp.155-165.
Ding, J. and Gidaspow, D., 1990, A bubbling fluidization model using kinetic theory of granular flow, AIChE J., 36, pp. 523-538.
Dittler, A., Ferer, M. V., Mathur, P., Djuranovic, P., Kasper, G. and Smith, D. H., 2002, Patchy cleaning of rigid gas filters—transient regeneration phenomena
comparison of modelling to experiment, Powder Technology,124, pp. 55-66.
Dorfan, M. I., Method and apparatus for suppressing stream and dust rising from coke being quenched. US Patent 2,606,187, 1952.
Doyle, III, F. J., Jackson, R. and Ginestra, J. G., 1986, “The phenomena of pinning in an annular moving bed reactor with crossflow of gas,” Chem. Eng. Sci., Vol. 41, pp. 1485-1495.
Ergun, S., “Fluid flow through packed column,” Chem. Eng. Progr., Vol 48, 1952, pp. 89-94.
Gal, E., Tardos, G. and Pfeffer, R., 1985, “A study of inertial effects in granular bed filtration,” AIChE J., 31, pp.1093-1104.
Geldart, D., Types of gas fluidization. Powder Technol., 7, 285-292, 1973.
Ghadiri, M., Seville, J. P. K. and Clift, R., 1993,“Fluidised bed filtration of gases at high temperatures,” Trans. ICHemE, Vol. 71, Part A, pp. 371-381.
Green, D.W. and Maloney, J.W., Perry’s Chemical Engineering’s Handbook, 6th Ed., International Student Edition (Eds.), pp. 20-105. McGraw-Hill, New York, NY, USA (1984).
Gutfinger, C. and Tardos, G. I., Theoretical and experimental investigation on granular bed dust filters. Atmospheric Environment, 6, 853-867, 1979.
Haghshenasfard, M., Zivdar, M., Rahimi, R. and Esfahany, M. Nasr, 2007, CFD simulation of gas distribution performance of gas inlet systems in packed columns, Chem. Eng. & Technol., Vol. 30 (9), pp. 1176-1180.
Hsiau, S.S., Smid, J., Wang, C.Y., Kuo, J.T. and Chou, C.S., 1999, Velocity profiles of granules in moving bed filters, Chem. Eng. Sci., 54, pp. 293-301.
Hsiau, S.S., Smid, J., Tsai, F.H., Kuo, J.T. and Chou, C. S., 2001, Velocities in moving bed filters, Powder Technol., 114, pp. 205-212.
Hsiau, S. S., Smid, J., Tsai, F. H., Kuo, J. T. and Chou, C. S, 2004, Placement of flow-corrective elements in a moving granular bed with louver-walls, Chemical Engineering and processing, 43, pp.1037-1045.
Ishikawa, K., Kawamata, N. and Kamei, K., Development of a simultaneous sulfer and dust removal process for IGCC Power Generation System, in: R. Clift and J.P.K. Seville (Eds.), Gas Cleaning at High Temperature, pp.419–435. Blackie Academic and Professionals, London (1993).
Ismail, L. S., Ranganayakulu, C. and Shah, R. K., 2009, Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for offset and wavy fins, International Journal of Heat and Mass Transfer, 52, pp. 3972-3983.
Ji, Z., Shi, M. and Ding, F., 2004, Transient flow analysis of pulse-jet cleaning system in ceramic filter, Powder Technology, 139, pp. 200-207.
Ji, Zhongli, Li, Haixia, Wu, Xiaolin and Choi, J. H., 2008, Numerical simulation of gas/solid two-phase flow in ceramic filter vessel, Powder Technology, 180, pp. 91-96.
Jiao, A. J., Zhang, R. and Jeong, S. K., 2003, Experimental investigation of header configuration on flow maldistribution in plate-fin heat exchanger, Applied
Thermal Engineering, 23, pp. 1235-1246.
Jiao, A. J. and Baek, S. W., 2005, Effects of distribution configuration on flow maldistribution in plate-fin heat exchangers, Heat Transfer Engineering, 26(4), pp.19-25.
Johanson, J.R., 1966, The use of flow corrective inserts in bins, Trans. ASME Ser. B J. Eng. Ind., 88, pp.224-230.
Johanson, J.R. and Kleysteuber, W.K., 1966, Flow-corrective inserts in bins, Chem. Eng. Progressing, 62, pp.79-83.
Johanson, J.R., 1967-1968, The placement of insert to correct flow problems, Powder Technol., 1, pp.328-333.
Jordan, S. and Linder, W., 1988, Experiences with a cross-flow granular bed filter, Chem. Ing. Tech., 60 (1), pp. 34–35 (in German).
Ju, J., Chiu, M.S. and Tien, C., 2001, Further work on pulse-jet fabric filtration modeling, Powder Technol., 118, pp. 79-89.
Kalinowski, W. and Leith, D., 1981, Aerosol filtration by a co-current moving granular bed: Penetration mechanisms, Environ. Int., 6, pp. 379-386.
Kim, M.I., Lee, Y., Kim, B. W., Lee, D.H. and Song, W.S., 2009, CFD modeling of shell-and-tube heat exchanger header for uniform distribution among tubes, Korean Journal of Chemical Engineering, 26 (2), pp. 359-363.
Kouri, R. J. and Sohlo, J. J., 1987, Liquid and gas flow patterns in random and structed packings, Institution of Chemical Engineering Symposium Series No. 104, B193-B211.
Kozeny, J., “Über kapillare Leitung des Wassers im Boden,” Sitzungsber. Akad. Wiss. Wien, 136, 271-306 (1927).
Kuo, J. T., Smid, J., Hsiau, S. S. and Chou, C. S., 1998, “Granular Bed Filter Technology,” Proc. Natl. Sci. Counc, R.O.C.(A), Vol. 22, No. 1, pp. 17-34.
Kuo, J.T., Smid, J., Hsiau, S.S., Wang, C.Y. and Chou, C.S., 1998, Stagnant zones in granular moving bed filters for flue gas clean-up, Filtr. Sep., 35, pp. 529-534.
Lee, K. C., Pfeffer, R. and Squires, A. M., 2005, Granular-bed filtration assisted by filte-cake formation 1. Exploiting a new mode of soil failure for renewal of filtration surfaces in a panel bed, Powder Technology, 155, pp. 5-16.
Lee, K. W. and Schmidt, E. W., Collection of aerosol particles using granular bed filters in the maximum penetration regime. In: Powder Technol. 547-556. Iinoya
et al. Eds. Hemisphere Publ. Corp., New York,USA, 1984.
Longanbach, J. R., 1998, Preparing advanced coal-based power systems for the 21st century at power systems development facility in Wilsonville, Alabama. Proc. of
23rd Int’l Technical Conf. on Coal Utilization & Fuel System, pp. 69-78, Clearwater, FL, U.S.A.
Lun, C. K. K., Sevage, S. B., Jeffrey, D. J. and Chepurniy, N., 1984, Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield, Journal of Fliud Mechanics, 140, pp. 223-256.
Macdonald, I. F., El-Sayed, M. S., Mow, K., and Dullien, F. A. L., ” Flow through Porous Media-the Ergun Equation Revisited, Ind. Eng. Chem. Fundam., Vol. 18, No. 3, 1979, pp. 199-208.
Macias-Machin, A., Cuellar, J., Estevez, A. and Jaraiz, E., 1992, “Simple design of a crossflow moving bed heat exchanger-filter,” Filtration & Separation,March/April, pp. 155-161.
Miyamoto, S. and Bohn, H.L., 1975, Filtration of airborne particulates by gravel filters: collection efficiency and pressure drop on filtering fume, J. Air Waste. Mater., 25, pp. 40–43.
Mori, Y. and Iinoya, K., Dust collection by a granular packed bed. Powder Technology, 38, 557-564, 1984.
Mustonen, J. P., Bossart, S. J. and Durner, M. W., 1991, “Technical and economical analysis of advanced particle filters for PFBC applications,” Proc. Int. Conf. on Fluidized Bed Combustion, Montreal, Canada,Vol.1 pp.475-480.
Nielsen, P.V., 2000, Velocity distribution in a room ventilated by displacement ventilation and wall-mounted air terminal devices, Energy and Buildings 31, pp.179-187.
Nykanen, J. C., Zevenhoven, C. A. P., Andries, J. and Hein, K. R. G., Moving granular research at Delft University of Technology. Proc. 5th Finnish National
Aerosol Symposium, Finland, 119-124, 1993.
Otani, Y., Kanaoka, C. and Emi, H., Experimental study of aerosol filtration by the granular bed over a wide range of Reynolds numbers. Aerosol Sci. and Technol., 10, 463-474, 1989.
Paretsky, L., Theodore, L., Pfeffer, R. and Squires, A. M., Panel bed filters for simultaneous removal of fly ash and sulfur dioxide. II. Filtration of dilute aerosols by sand beds. J. of the Air Pollut. Control Assoc., 21(4), 201-209, 1971.
Petrova, T., Darakchiev, R., Semkov, K. and Darakchiev, S., 2008, Estimations of gas flow maldistribution in packed-bed columns, Chemical Engineering and Technology, 31(12), pp.1723-1729.
Peukert, W. and Loffler, F., 1991, Influence of temperature on particle separation in granular bed filters, Powder Technology,68(3), pp. 263-270.
Reese, R.G., 1977, The application of a dry scrubber to exhaust gas clean-up, Journal Tech. Assoc. Pulp Paper Ind., 60, pp. 109-111.
Rek, Z., Zun, I., Buljan, T., and Hribar, T., 2008, Electrostatic filter efficiency improvement based on velocity and pressure field numerical simulation,” Proc. IMechE Part A: J. Power and Energy, Vol. 222 (A5), pp.509-516.
Risnes, H. and Sønju, O. K., Evaluation of a novel granular bed filtration system for high temperature applications. Progress in Thermo-chemical Biomass Conversion Congress Blackwell Science Progress, Tyrol, Asutria, 1, 730-734, 2001.
Robin, A.M., Jung, D.Y., Kassman, J.S., Leininger, T.F., Wolfenbarger, J.K. and Yang, P.P., 1992, Integration and testing of hot desulfurization and entrained flow gasification for power generation systems, in: R.A. Johnson, S.C. Jain (Eds.), Proceedings of the 12th Annual Gasification and Gas Cleanup Systems Contractors ReviewMeeting, vol. 1, Hemisphere Publ. Co.,Washington, pp.
713–731.
Rothkegel, H., Process and device for the separation of dust from hot gases, EP Patent 0321914 A1 (1989).
Sasatsu, H., Misawa, N., Shimizu, M. and Abe, R., 2001, Predicting the pressure drop across hot gas filter (CTF) installed in a commercial size PFBC system, Powder Technology, 118, pp. 58-67.
Saxena, S. C., Henry, R. F. and Podolski, W. F., 1985, Particulate removal from high temperature, high temperature combustion gases, Prog. Energy combust. Sci., 11(3), pp. 193-251.
Shinohara, K. and Golman, B., Air pressure drop across a particle moving bed in a three-dimensional cold model of a blast furnace. Advanced Powder Technol., 16(4), 387-397, 2005.
Song, X., Wang, Z., Jin Y. and Gong M., 1993, Investigations on hydrodynamics of radial flow moving bed reactors,” Chem. Eng. Technol., Vol. 16, pp. 383-388.
Squires, A. M. and Pfeffer, R., Panel bed filters for simultaneous removal of fly ash and sulfur dioxide. I. Introduction. J. Air Pollut. Control Assoc., 20(8), 534-538,1970.
Staubly, K. et al., 1994, “Overview of METC’s gas stream cleanup program,” In Proceedings of the International Pittsburgh Coal Conference, Pittsburgh, PA.
Steven, S. and Nelson, C., 2006, Performance of ventilator components for natural ventilation applications, Building and Environment., 41, pp.1821-1830.
Stikkelman, R. M. and Wesselingh, J. A., 1987, Liquid and gas flow patterns in packed columns, Institution of Chemical Engineering Symposium Series No. 104, B155-B164.
Stringer, J. and Leitch, A. J., 1992, Ceramic Candle Filter Performance at the Grimethorpe (UK) Pressurized Fluidized Bed Combustor, Journal of Engineering for Gas Turbines and Power,114(2), pp.371 - 379.
Tajiri, H. and Kamei, K., Moving granular bed dust removal and reaction apparatus, US Patent 5238659 (1993).
Tardos, D. I., Yu, E., Pfeffer, R. and Squires, A. M., Experiments on aerosol filtration in granular sand beds. J. of Colloid. and Interface Science, 71(3), 616-621, 1979.
Tardos, D. I., Abuaf, N. and Gutfinger, C., Dust deposition in granular bed filters: theories and experiments. J.A.P.C.A., 28(4), 354-363, 1978.
Thambimuthu, K. V., Gas Cleaning for Advanced Coal-Based Power Generation, report 153, IEA Coal Research, London (1993).
Thielen, W. and Thomas, G., Device for receiving granular bulk material traversed by a gas stream, EP Patent 0351665 A1 (1990).
Tsubaki, J. and Chi T., 1988, “Gas filtration in granular moving beds - An experimental study,” Canadian J. of Chem. Eng., Vol. 66, pp. 271-275.
Wen, J., Li, Y., Wang, S. and Zhou, A., 2007, Experimental investigation of header configuration improvement in plate-fin heat exchanger, Applied Thermal Engineering, 27, pp. 1761-1770.
Westinghouse, 1995, “Moving Granular-Bed Filter Development Program Option 1,”Test Plan, Electric Corporation Science and Technology Center.Wilson, K. B. and Hass, J. C., 1994, “Moving granular bed filter development program,” In Proceedings of the Eleventh International Pittsburgh Coal Conference, Pittsburgh, PA, pp. 131-136.
Xu, T. X., Zhang, L. T. and Yang, X., 2004, “New dedusting concept of high temperature and high pressure gases,” J. of Xi’An Jiaotong Univ., Vol. 38,pp.690-693.
Zahedi, K. and Alexander, J. C., Filter apparatus and method for collecting fly ash and fine dust, US Patent 4374652 (1983).
Zakkay, V. and Gbordzoe, E.A.M., 1989, A review of hot-gas cleanup devices for PFBC, in: Combustion en Lechos Fluidizados, Program Comett Comunidad Economical European, Zaragoza, Spain, pp. 216–275.
Zevenhoven, C. A. P., Scarlett, B. and Andries, J., The filtration of PFBC combution gas in a granular bed filter. Filtration and Separation, 29(3), 239-244, 1992.
Zevenhoven, C. A. P., Hein, K. R. G. and Scarlett, B., Moving granular bed filtration with electrostatic enhancement for high-temperature gas clean-up. Filtration and Separation, 30, 550-553, 1993a.
Zevenhoven, C. A. P., Andries, J., Hein, K. R. G. and Scarlett, B., High temperature gas cleaning for PFBC using a moving granular bed filter. In: Gas Cleaning at High Temperature. Clift, R. and Seville, J. P. K., Eds., Blackie Academic and Professional, London, UK, 1993b.
Zevenhoven, C. A. P., Andries, K. R. G., Hein, K. R. G. and Scarlett, B, 1993,“High temperature gas cleaning for PFBC using a moving granular bed filter,” in Gas Cleaning at High Temperatures, edited by R. Clift and J. P. K. Seville, Blackie Academic & Professional, pp. 400-418.
王正炎,1996,「氣體淨化系統流動式顆粒床流場之實驗分析」,國立中央大學機械工程研究所碩士論文。
蔡富豪,1997,「流動式顆粒床內之顆粒流場分析」,國立中央大學機械工程研究所碩士論文。
古政芳,1999,「流動式顆粒床過濾器阻礙物配置之設計 」,國立中央大學機械工程研究所碩士論文。
陳一順, 2001, 「流動式顆粒床過濾器三維流場觀察與冷性能測試」,國立中央大學機械工程研究所碩士論文。
馬家駒, 2001, 「流動式顆粒床過濾器冷性能測試」,國立中央大學機械工程研究所碩士論文。
杜威達,2002,「二維流動式顆粒床過濾器內部配置設計研究」,國立中央大學機械工程研究所碩士論文。
賴信璋,2002,「流動式顆粒床過濾器過濾機制研究」,國立中央大學機械工程研究所碩士論文。
馬勝銘,2003,「循環式顆粒床過濾器過濾性能研究」,國立中央大學機械工程研究所碩士論文。
高偉智,2004,「流動式顆粒床過濾器之流動校正單元設計與分析研究 」,國立中央大學機械工程研究所碩士論文。
蔡信安,2005,「流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究 」,國立中央大學機械工程研究所碩士論文。
李宣億,2007,「流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究 」,國立中央大學機械工程研究所碩士論文。
陳一順,2008,「流動式顆粒床過濾器之濾餅機制行為研究 」,國立中央大學機械工程研究所博士論文。
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2011-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明