博碩士論文 92323102 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.145.191.169
姓名 林冠元(Kuan-Yuan Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 大量點資料建構B-spline曲線及曲面之逆向工程技術發展
(Development of B-spline Curves and Surfaces Reconstruction Techniques for Massive Point Data in Reverse Engineering)
相關論文
★ 光纖通訊主動元件之光收發模組由上而下CAD模型設計流程探討★ 汽車鈑金焊接之夾治具精度分析與改善
★ 輪胎模具反型加工路徑規劃之整合研究★ 自動化活塞扣環壓入設備之開發
★ 光學鏡片模具設計製造與射出成形最佳化研究★ CAD模型基礎擠出物之實體網格自動化建構技術發展
★ 塑膠射出薄殼件之CAD模型凸起面特徵辨識與分模應用技術發展★ 塑膠射出成型之薄殼件中肋與管設計可製造化分析與設計變更技術研究
★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展★ 結合田口法與反應曲面法之光學鏡片射出成型製程參數最佳化分析
★ 薄殼零件薄殼本體之結構化實體網格自動建構技術發展★ Boss特徵之結構化實體網格自動化建構技術發展
★ 應用於模流分析之薄殼元件CAD模型特徵辨識與分解技術發展★ 實體網格建構對於塑膠光學元件模流分析 之影響探討
★ 螺槳葉片逆向工程CAD模型重建與檢測★ 電腦輔助紋理影像辨識與點資料視覺化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在產品開發過程中,逆向工程一直扮演著重要角色,而所謂逆向工程係指由產品實體取得數位化曲面模型的流程方法。過程中,除了必須透過許多技術的實施與整合,往往也因為經驗導向的緣故,需要耗費大量的時間與人力,才能獲得理想的曲面模型結果。為了改善這樣的狀況,有效提升逆向曲面重建的效率與品質,本研究乃主要針對曲面自動化重建的議題,提出可能的解決方案,其中的主要特點在於:有別於過去常見的曲面自動化重建方法,乃僅以網格資料為輸入的型式,本研究另外加入了邊界輪廓曲線群為網格孔洞拘束的輸入條件,不但能節省過去需就量測網格資料完整修補所耗費的人力與時間外,亦可有效改善曲面建構品質,以落實高效率、高品質的逆向曲面重建目標。而針對自動化的曲面建構目標,本研究乃發展出特定的點、網格、曲線與曲面演算法,再加以適當串連、整合後,方能加以有效實現。除此之外,相關的曲線演算法亦延伸應用在電腦輔助製造領域的路徑轉換、插補技術方面。
具體而言,本研究所發展的各項技術可條列說明如下:(1)具誤差限制之曲線嵌方法,係考慮精度、平順性與邊界連續性條件之外,並加入容許誤差條件,以實現曲線自動化建構目標;(2)NC路徑轉換方法,係轉換大量直線插補指令為少量B-spline曲線指令,以輔助高速高精加工目標的實現;(3)曲線路徑插補方法,能在滿足弦長誤差、速度、加速度與急衝度的前提下,規劃出適當插補路徑,以實現高速高精加工目標;(4)曲面貼覆點群方法,係結合初始曲面建構與曲面變形演算法的技術,並以攤平概念求得較理想的參數初始值,可兼具較佳的運算效率與曲面品質;(5)三角網格群轉B-spline曲面之自動化方法,乃參考三角網格與邊界輪廓曲線的限制,可快速、自動產生相鄰曲面邊界具G1連續性的曲面群組,能大幅提升曲面重建的效率。
摘要(英) Reverse engineering is a process of acquiring the sirface model from the digitized points of a physical part. It usually plays an important role on the development of new products. In addition to the implementation and integration of plenty of skills, a reverse engineering process always needs considerable time and efforts for generating satisfactory surface models as it is experience-oriented. In this study, we propose an automatic surface reconstruction method to deal with the above- mentioned problem, which can improve both the efficiency and quality of the reconstructed surfaces. Its main characteristic is as follows: different from the common methods where only a set of triangle meshes is used as the input, a set of boundary contours/curves are added for constraining the internal of external boundary of the final shape. It not only can save the efforts required for the pre-processing of the original meshes, but also can improve the surface quality and the efficiency of the entire process. For the task of automatic surface reconstruction, some specific algorithms for processing points, meshes, curves and surfaces are provided first. An intact process integrating all the related algorithms is then introduced in detail. In addition, the related algorithms for curves are further applied in computer-aided manufacturing for automatic generation of Nurbs-based NC paths from linear and circular NC paths.
Concretely speaking, the techniques developed in this study can be listed as follows: (1) An error-bounded curve fitting method is proposed to realize the goal of automatic curve construction. It not only takes the minimization of the sum of squared deviations, the strain energy minimization and the boundary continuity constraints into consideration, but also utilizes the allowed maximum and root-mean-square errors as extra constraints; (2) A method of NC code conversion is proposed for indirectly achieving the high-speed and high-precision machining under low-cost conditions. It can transform a plenty of conventional G01 codes into the less G-codes of B-spline curves; (3) A NURBS interpolator is proposed for effectively realizing the aim of high-speed and high-precision machining. It can generate sampled points on curves appropriately to meet the confined chord error, feedrate, acceleration and jerk; (4) A surface warping method is proposed for providing high-efficiency computing and suitable surface quality. It was composed of the creation of a specific initial surface and the shape-modifying operations; (5) An automatic surface reconstruction method with extra constrained boundary contours is proposed for dramatically reducing the time spent for surface reconstruction in practice. It can automatically generate a set of surface patches with G1 continuity across the shared boundaries in an efficient way according to a triangle mesh and extra boundary curves.
關鍵字(中) ★ 自動化曲面重建
★ 曲面貼覆
★ 曲線插補
★ 加工路徑轉換
★ 具誤差限制的曲線擬合
關鍵字(英) ★ Automatic surface reconstruction
★ Surface warping
★ NURBS interpolator
★ NC paths conversion
★ Error-bounded curve fitting
論文目次 摘要................................................................................... I
ABSTRACT.....................................................................II
致謝................................................................................ IV
目錄..................................................................................V
圖目錄.............................................................................IX
表目錄..........................................................................XIV
第 1章緒論....................................................................1
1-1 前言..............................................................................1
1-1-1 逆向工程技術.......................................................4
1-1-2 電腦輔助製造技術.............................................. 11
1-1-3 相關技術發展現況..............................................15
1-2 文獻回顧....................................................................16
1-3 研究目的與方法.........................................................26
1-4 論文架構....................................................................39
第 2章具誤差限制之曲線嵌合方法..........................40
2-1 前言............................................................................40
2-2 方法概要....................................................................41
2-3 初始曲線預估.............................................................44
2-4 點資料參數化.............................................................49
2-4-1 參數值初始化-弦長法........................................49
2-4-2 參數值最佳化-牛頓法........................................49
2-5 控制點位置最佳化.....................................................51
2-5-1 B-spline 曲線模型................................................52
2-5-2 PDM 嵌合............................................................52
2-5-2-1曲線一般性嵌合.......................................................52
2-5-2-2曲線平滑性嵌合.......................................................54
2-5-2-3曲線邊界拘束性嵌合................................................58
2-5-3 SDM 貼覆............................................................66
2-5-3-1曲線一般性貼覆.......................................................66
2-5-3-2曲線平滑性貼覆.......................................................72
2-5-3-3曲線邊界拘束性貼覆................................................75
2-6 控制點分佈與數量調整.............................................77
2-6-1 曲線節點新增.....................................................77
2-6-2 曲線節點移除.....................................................80
2-7 範例討論....................................................................83
2-8 結論............................................................................94
第 3章NC曲線路徑轉換與插補方法........................95
3-1 前言............................................................................95
3-2 方法概要....................................................................96
3-3 NC 路徑轉換方法.......................................................100
3-3-1 路徑點擷取.......................................................100
3-3-2 點資料處理.......................................................104
3-3-2-1雜訊濾除.................................................................104
3-3-2-2點群分段.................................................................105
3-3-3 曲線路徑產生...................................................108
3-3-3-1路徑點嵌合曲線.....................................................114
3-3-3-2曲線裁斷.................................................................115
3-3-4 曲線 NC 編碼.................................................... 117
3-4 曲線路徑插補方法...................................................123
3-4-1 插補點計算.......................................................123
3-4-1-1一般的計算方法.....................................................123
3-4-1-2修正後的計算方法..................................................124
3-4-2 預視機制階段...................................................130
3-4-3 即時打點階段...................................................138
3-4-4 多曲線插補.......................................................140
3-4-4-1決定預視的曲線數量..............................................140
3-4-4-2斜率不連續的接合條件..........................................141
3-4-4-3曲率不連續的接合條件..........................................142
3-4-4-4短節點區間的影響與處理......................................143
3-5 範例討論..................................................................149
3-5-1 實例-NC 路徑轉換............................................149
3-5-2 實例-曲線路徑插補..........................................159
3-6 結論..........................................................................173
第 4章曲面貼覆點群方法........................................174
4-1 前言..........................................................................174
4-2 方法概要..................................................................174
4-3 初始曲面建構...........................................................177
4-3-1 平面...................................................................177
4-3-2 昆氏曲面...........................................................178
4-3-3 Bicubic 昆氏曲面...............................................179
4-3-4 舉升曲面...........................................................182
4-3-5 掃掠曲面...........................................................188
4-3-6 編織曲面...........................................................205
4-4 點資料參數化........................................................... 211
4-4-1 參數值初始化-調和映射法............................... 211
4-4-2 參數值最佳化-牛頓法......................................215
4-5 控制點位置最佳化...................................................217
4-5-1 PDM 貼覆..........................................................217
4-5-2 SDM 貼覆..........................................................220
4-6 邊界拘束性條件.......................................................231
4-7 控制點分佈與數量調整...........................................233
4-8 範例討論..................................................................234
4-9 結論..........................................................................258
第 5章三角網格群轉B-spline曲面之自動化方法.259
5-1 前言..........................................................................259
5-2 方法概要..................................................................262
5-3 四邊曲線網絡規劃...................................................265
5-3-1 具邊界輪廓拘束之自動規劃............................265
5-3-1-1四邊網絡外形的產生..............................................265
5-3-1-2網格細線點群與曲線群的建構..............................270
5-3-2 手動規劃...........................................................280
5-3-2-1架構曲線與曲面法向曲線的建構..........................280
5-3-2-2網格細線點的產生..................................................281
5-4 網格分割暨曲面拓璞資訊建立...............................284
5-4-1 網格細分...........................................................290
5-4-2 區域成長...........................................................294
5-5 曲面建構..................................................................295
5-6 範例討論..................................................................301
5-7 結論..........................................................................324
第 6章結論與未來展望............................................325
6-1 結論..........................................................................325
6-2 未來展望..................................................................329
參考文獻.......................................................................332
林冠元 個人簡歷..........................................................341
參考文獻 [1] Heidrich, W., Bartels, R. and Labahn, G., “Fitting Uncertain Data with NURBS”, Proc. of Curves and Surfaces, Chamonix, France :pp. 1-8 (1997).
[2] Fang, L. and Gossard, D.C., “Multidimensional Curve Fitting to Unorganized Data Points by Nonlinear Minimization”, Computer-Aided Design, Vol 27, No. 1, pp. 48-58 (1995).
[3] Pottmann, H., Leopoldseder, S. and Hofer, M., “Approximation with Active B-spline Curves and Surfaces”, Proc. of the Pacific Graphics, IEEE Press: pp. 8-25 (2002).
[4] Wang, W., Pottmann, H. and Liu, Y., “Fitting B-spline Curves to Point Clouds by Squared Distance Minimization”, HKU CS Tech Report TR-2004-11 (2004).
[5] Eck, M. and Hadenfeld, J., “Local Energy Fairing of B-spline Curves”, Computing Supplement, Vol. 10, pp. 129-147 (1995).
[6] Poliakoff, J.F., Wong, Y.K. and Thomas, P.D., “An Automated Curve Fairing Algorithm for Cubic B-spline Ccurves”, Journal of Computational and Applied Mathematics, Vol. 102, pp. 73-85 (1998).
[7] Li, W., Xu, S., Zheng, J. and Zhao, G., “Target Curvature Driven Fairing Algorithm for Planar Cubic B-spline Curves”, Computer Aided Geometric Design, Vol. 21, pp. 499-513 (2004).
[8] Szobonya, L. and Renner, G., “Construction of Curves and Surfaces Based on Point Clouds”, Proc. First Hungarian Conference on Computer Graphics and Geometry, Budapest, pp. 57-62 (2002).
[9] Alhanaty, M. and Bercovier, M., “Curve and Surface Fitting and Design by Optimal Control Methods”, Computer-Aided Design, Vol. 33, pp. 167-182 (2001).
[10] Piegl, L.A. and Tiller, W., “Least-squares B-spline Curve Approximation with Arbitrary End Derivatives”, Engineering with Computers, Vol. 16, pp. 109-116 (2000).
[11] Benkő, P., Kós, G., Várady, T., Andor, L. and Martin, R., “Constrained Fitting in Reverse Engineering”, Computer Aided Geometric Design, Vol. 19, pp. 173-205 (2002).
[12] Park, H., Kim, K. and Lee, S.C., “A Method for Approximate NURBS Compatibility Based on Multiple Curve Refitting”, Computer-Aided Design, Vol. 32, pp. 237-252 (2000).
[13] Ueng, W.D., Lai, J.Y., Tsai, Y.Z., “Unconstrained and Constrained Curve Fitting for Reverse Engineering”, Int. J. Adv. Manuf. Technol., Vol. 33, pp. 1189-1203 (2006).
[14] Razdan, A., “Knot Placement for B-spline Curve Approximation”, Technical Report, Arizona State University (1999).
[15] Li, W., Xu, S., Zhao, G. and Goh, L.P., “Adaptive Knot Placement in B-spline Curve Approximation”, Computer-Aided Design, Vol. 37, pp. 791-797 (2005).
[16] Cham, T.J. and Cipolla, R., “Automated B-spline Curve
Representation Incorporating MDL and Error-minimizing Control Point Inserting Strategies”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No. 1, pp. 49-53 (1999).
[17] Yang, H.P., Wang, W.P. and Sun, J.G., “Control Point Adjustment for B-spline Curve Approximation”, Computer-Aided Design, Vol. 36, pp. 639-652 (2004).
[18] Park, H., “An Error-bounded Approximate Method for Representing Planar Curves in B-splines”, Computer Aided Geometric Design, Vol. 21, pp. 479-497 (2004).
[19] Park, H. and Lee, J.H., “Error-bounded B-spline Curve
Approximation Based on Dominant Point Selection”, IEEE Proceedings of the Computer Graphics, Imaging and Vision: New Trends, (2005).
[20] Park, H. and Lee, J.H., “B-spline Curve Fitting Based on Adaptive Curve Refinement Using Dominant Points”, Computer-Aided Design, Vol. 39, pp. 439-451 (2007).
[21] Yau, H.T. and Kuo, M.J., “NURBS Machining and Feed Rate Adjustment for High-speed Cutting of Complex Sculptured Surfaces”, Int. J. Prod. Res., Vol. 39, No. 1, pp. 21-41 (2001).
[22] Lee, R.S. and Liang, S.P., “A Strain Energy Minimization Method for Generating Continuous NURBS-based Motion Curves in Free-form Surface Machining”, Int. J. Adv. Manuf. Technol., Vol 28, pp. 1136-1145 (2006).
[23] 廖家賢,「NURBS 插補器在PC-BASED CNC 之設計與實現」,
國立中央大學,碩士論文,民國91 年。
[24] 陳文棋,「CNC 工具機運動控制預視插補器之研究」,國立中正大學,碩士論文,民國93 年。
[25] 葉志華,「即時預視NURBS 插補器之研究」,國立中正大學,碩士論文,民國95 年。
[26] Huang, M.C. and Tai, C.C., “The Pre-processing of Data Points for Curve Fitting in Reverse Engineering”, Int. J. Adv. Manuf. Technol., Vol. 16, pp. 635-642 (2000).
[27] Bedi, S., Ali, I. and Quan, N., “Advanced Interpolation Techniques for CNC Machines”, ASME Journal Engineering Industry, Vol. 115, pp. 329-336 (1993).
[28] Shpitalni, M., Koren, Y. and Lo, C.C., “Real-time Curve Interpolators”, Computer-Aided Design, Vol. 26(11), pp. 832-838 (1994).
[29] Yang, D.C.H. and Kong, T., “Parametric Interpolator versus Linear Interpolator for Precision NC Machining”, Computer-Aided Design, Vol. 26(3), pp. 225-234 (1994).
[30] Yen, S.S. and Hsu, P.L., “The Speed-controlled Interpolator for Machining Parametric Curves”, Computer-Aided Design, Vol. 31, pp. 349-357 (1999).
[31] Yen, S.S. and Hsu, P.L., “Adaptive-feedrate Interpolation for Parametric Curves with a Confined Chord Error”, Computer-Aided Design, Vol. 34, pp. 229-237 (2002).
[32] Yong, T. and Narayanaswami, R., “A Parametric Interpolator with Confined Chord Errors, Acceleration and Deceleration for NC Machining”, Computer-Aided Design, Vol. 35, pp. 1249-1259 (2003).
[33] Tsai, M.C., Cheng, C.W. and Cheng, M.Y., “A Real-time NURBS Surface Interpolator for Precision Three-axis CNC Machining”, International Journal of Machine Tools and Manufacture, Vol. 43, pp. 1217-1227 (2003).
[34] Nam, S.H. and Yang, M.Y., “A Study on Generalized Parametric Interpolator with Real-time Jerk-limited Acceleration”, Computer-Aided Design, Vol. 36, pp. 27-36 (2004).
[35] Chen, K.J., Lai, J.Y. and Ueng, W.D., “An Extended Surface Fitting Algorithm for Random Data”, Journal of the Chinese Institute of Engineers, Vol. 30, No. 5, pp. 863-876 (2007).
[36] Woodward, C., “Skinning Techniques for Interactive B-spline Surfaces Interpolation”, Computer-Aided Design, Vol. 20, No. 8, pp. 441-451 (1988).
[37] Hohmeyer, M. and Barsky, B., “Skinning Rational B-spline Curves to Construct an Interpolatory Surface”, Comput. Vis., Graph. and Image Processing: Graphical Models and Image Processing, Vol. 53, No. 6, pp. 511-521 (1991).
[38] Piegl, L. and Tiller, W., “Algorithm for Approximate NURBS Skinning”, Computer-Aided Design, Vol. 28, No. 9, pp. 699-706 (1996).
[39] Choi, B.K. and Lee, C.S., “Sweep Surface Modeling via Coordinate Transformation and Blending”, Computer-Aided Design, Vol. 22, No. 2, pp. 87-96 (1990).
[40] Wang, G.P. and Sun, J.G., “Shape Control of Swept Surface with Profiles”, Computer-Aided Design, Vol. 15, pp. 79-101 (1997).
[41] Ueng, W.D., Lai, J.Y. and Doong, J.L., “Sweep-surface
Reconstruction from Three-dimensional Measured Data”, Computer-Aided Design, Vol. 30, No. 10, pp. 791-805 (1998).
[42] Juttler, B. and Wagner, M.G., “Rational Motion-based Surface Generation”, Computer-Aided Design, Vol. 31, pp. 203-213 (1999).
[43] Abdel-Malek, K. and Othman, S., “Multiple Sweeping Using Denavit-Hartenberg Representation Method”, Computer-Aided Design, Vol. 31, pp. 567-583 (1999).
[44] Coons, S., “Surfaces for Computer Aided Design”, Technical Report, M.I.T. (1964).
[45] Lin, F. and Hewitt, W.T., “Expressing Coons-Gordon Surfaces as NURBS”, Computer-Aided Design, Vol. 26, No. 2, pp. 145-155 (1994).
[46] Ma, W. and Kruth, J.P., “Parameterization of Randomly Measured Points for Least Squares Fitting of B-spline Curves and Surfaces”, Computer-Aided Design, Vol. 27, No. 9, pp. 663-675 (1995).
[47] Piegl, L.A. and Tiller, W., “Parameterization for Surface Fitting in Reverse Engineering”, Computer-Aided Design, Vol. 33, pp. 593-603 (2001).
[48] Azariadis, P.N., “Parameterization of Clouds of Unorganized Points Using Dynamic Base Surfaces”, Computer-Aided Design, Vol. 36, pp. 607-623 (2004).
[49] Hu, S.H. and Wallner, J., “A Second Order Algorithm for Orthogonal Projection onto Curves and Surfaces”, Computer Aided Geometric Design, Vol. 22, pp. 251-260 (2005).
[50] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M. and Stuetzle, W., “Multiresolution Analysis of Arbitrary Meshes”, Computer Graphics (SIGGRAPH ’95 Proceedings), pp. 173-182 (1995).
[51] Floater, M.S., “Parameterization and Smooth Approximation of Surface Triangulations”, Computer Aided Geometric Design, Vol. 14, pp. 231-250 (1997).
[52] Hormann, K. and Greiner, G., "MIPS: An Efficient Global Parameterization Method," Curve and Surface Design Conference Proceedings, pp. 153-162 (1999).
[53] Sheffer, A. and Sturler, E.D., “Parameterization of Faceted Surfaces for Meshing Using Angle-based Flattening”, Engineering with Computers, Vol. 17, pp. 326-337 (2001).
[54] Sarkar, B. and Menq, C.H., “Smooth-Surface Approximation and Reverse Engineering”, Computer-Aided Design, Vol. 23, No. 9, pp. 623-628 (1991).
[55] Chivate, P.N. and Jablokow, A.G., “Review of Surface
Representations and Fitting for Reverse Engineering”, Computer Integrated Manufacturing Systems, Vol. 8, No. 3, pp. 193-204, (1995).
[56] Lai, J.Y. and Lu, C.Y., “Reverse Engineering of Composite Sculptured Surfaces”, Int. J. Adv. Manuf. Technol., Vol. 12, pp. 180-189 (1996).
[57] Ye, X., Jackson, T.R. and Patrikalakis, N.M., “Geometric Design of Functional Surfaces”, Computer-Aided Design, Vol. 28, No. 9, pp. 741-752 (1996).
[58] Weiss, V., Andor, L., Renner, G. and Várady T., “Advanced Surface Fitting Techniques”, Computer Aided Geometric Design, Vol. 19, pp. 19-42 (2002).
[59] Milroy, M.J., Bradley, C., Vickers, G.W. and Weir, D.J., “G1 Continuity of B-spline Surface Patches in Reverse Engineering”, Computer-Aided Design, Vol. 27, No. 6, pp. 471-478 (1995).
[60] Lai, J. Y. and Ueng, W. D., “G1 Continuity of B-Spline Surfaces in Reverse Engineering”, Journal of the Chinese Society of Mechanical Engineers, Vol. 22, No. 6, pp. 477-488 (2001).
[61] Shi, X., Yu, P. and Wang, T., “G1 Continuous Conditions of Biquartic B-spline Surfaces”, Journal of Computational and Applied Mathematics, Vol. 144, pp. 251-262 (2002).
[62] Shi, X., Wang, T., Wu, P. and Liu, F., “Reconstruction of Convergent G1 Smooth B-spline Surfaces”, Computer Aided Geometric Design, Vol. 21, No. 9, pp. 893-913 (2004).
[63] Shi, X., Wang, T. and Yu, P., “A practical Construction of G1 Smooth Biquintic B-spline Surfaces over Arbitrary Topology”, Computer-Aided Design, Vol. 36, pp. 413-424 (2004).
[64] Pottmann, H. and Leopoldseder, S., “A Concept for Parametric Surface Fitting which Avoids the Parameterization Problem”, Computer Aided Geometric Design, Vol. 20, pp. 343-362 (2003).
[65] Liu, Y., Pottmann, H. and Wang, W., “Constrained 3D Shape Reconstruction Using a Combination of Surface Fitting and Registration”, Computer-Aided Design, Vol. 38, pp. 572-583 (2006).
[66] Bradley, C., Vickers, G.W. and Milroy, M., “Reverse Engineering of Quadric Surfaces Employing Three-dimensional Laser Scanning”, Journal of Engineering Manufacture, Vol. 208, pp. 21-28 (1994).
[67] Ueng, W.D., and Lai, J.Y., "A Sweep-surface Fitting Algorithm for Reverse Engineering", Computers in Industry, Vol. 35, No. 3, pp.261-273 (1998).
[68] Lai, J.Y. and Ueng, W.D., "Reconstruction of Surfaces of Revolution from Measured Points", Computers in Industry, Vol. 41, No. 2, pp. 147-161 (2000).
[69] Jiang, D. and Wang, L.C., “An algorithm of NURBS surface fitting for Reverse Engineering”, Int. J. Adv. Manuf. Technol., Vol. 31, pp. 92-97 (2006).
[70] Ma, W. and Zhao, N., “Catmull-Clark Surface Fitting for Reverse Engineering Applications”, In Proc. of Geometric Modeling, pp. 274-283 (2000).
[71] Ma, W., Ma, X., Tso, S.K. and Pan, X., “A Direct Approach for Subdivision Surface Fitting from a Dense Triangle Mesh”, Computer-Aided Design, Vol. 36, pp. 525-536 (2004).
[72] Eck, M. and Hoppe, H., “Automatic Reconstruction of B-Spline Surfaces of Arbitrary Topological Type”, In Proc. of SIGGRAPH’ 96, pp. 209-216 (1996).
[73] Takeuchi, S., Kanai, T., Suzuki, H., Shimada, K. and Kimura, F., “Subdivision Surface Fitting with QEM-based Mesh Simplification and Reconstruction of Approximated B-spline Surfaces”, The 8th Pacific Conference on Computer Graphics and Applications, pp. 202-212 (2000).
[74] Lin, H., Chen, W. and Bao, H., “Adaptive Patch-based Mesh Fitting for Reverse Engineering”, Computer-Aided Design, Vol. 39, pp. 1134-1142 (2007).
[75] Krishnamurthy, V. and Levoy, M., “Fitting Smooth Surfaces to Dense Polygon Meshes”, Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series, pp. 313-324 (1996).
[76] Zhang, L.Y., Zhou, R.R., Zhu, J.Y. and Wu, X., “Piecewise B-spline Surfaces Fitting to Arbitrary Triangle Meshes”, CIRP Annals: Manufacturing Technology, Vol. 51, No. 1, pp. 131-134 (2002).
[77] Tsai, Y.C., Huang, C.Y., Lin, K.Y., Lai, J.Y. and Ueng, W.D., “Development of Automatic Surface Reconstruction Technique in Reverse Engineering”, Int. J. Adv. Manuf. Technol., Vol. 42, pp. 152-167 (2009).
[78] He, Y. and Qin, H., “Surface Reconstruction with Triangular B-splines”, Proceedings of the Geometric Modeling and Processing 2004, pp. 279-287 (2004).
[79] Yvart, A., Hahmann, S. and Bonneau, G., “Smooth Adaptive Fitting of 3D Models Using Hierarchical Triangular Splines”, International Conference on Shape Modeling and Applications, SMI'05, pp. 13–22 (2005).
[80] Garland, M. and Zhou, Y., “Quadric-based Simplification in Any Dimension”, ACM Transactions on Graphics, Vol. 24, No. 2, pp. 209–239 (2005).
[81] Wu, Y., He, Y. and Cai, H., “QEM-based Mesh Simplification with Global Geometry Features Preserved”, Proceedings of the 2nd international conference on Computer graphics and interactive techniques in Australasia and South East Asia, pp. 50-57 (2004).
[82] Kho, Y. and Garland, M., “User-guided implification”, In Proceedings of ACM Symposium on Interactive 3D Graphics, pp. 123-126 (2003).
[83] Borouchaki, H. and Frey, P.J., “Adaptive Triangular-quadrilateral Mesh Generation”, International Journal of Numerical Methods in Engineering, Vol. 41, No. 5, pp. 915-934 (1998).
[84] Maza, S., Noel, F. and Leon, J.C., “Generation of Quadrilateral Meshes on Free-form Surface”, Computers & Structures, Vol. 71, No. 5, pp. 505-524 (1999).
[85] Hu, S.M., Li, Y.F., Ju, T. and Zhu, X., “Modifying the Shape of NURBS Surfaces with Geometric Constraints”, Computer-Aided Design, Vol. 33, pp. 903-912 (2001).
[86] Piegl, L.A. and Tiller, W., The NURBS book, 2nd Edition, Springer-Verlag, Berlin, (1997).
[87] Tiller, W., “Knot-removal Algorithms for NURBS Curves and Surfaces”, Computer-Aided Design, Vol. 24, No. 8, pp. 445-453 (1992).
[88] Boehm, W., “On the Efficiency of Knot Insertion Algorithms”, Computer Aided Geometric Design, Vol. 2, Nos. 1-3, pp. 141-143 (1985).
[89] Schilling, R.J. and Harris, S.L., Applied Numerical Methods for Engineers Using MATLAB and C, Brooks/Cole (2000).
[90] Lai, J.Y., Shu S.H. and Huang Y.C., “A Cell Subdivision Strategy for R-nearest Neighbors Computation”, Journal of the Chinese Institute of Engineers, Vol. 29, No. 6, pp. 953-965 (2006).
[91] Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T., Numerical Recipes in C: The Art of Scientific Computing, Cambridge, New York (1992).
[92] Piegl L.A. and Tiller W., “Fillling N-Sided Regions with NURBS Patches”, The Visual Computer, Vol. 15, pp. 77-89 (1999).
[93] Lai, J.Y. and Lai, H.C., “Repairing Triangular Meshes for Reverse Engineering Applications”, Advances in Engineering Software, Vol. 37, pp. 667-683 (2006).
[94] Lai, J.Y. and Hsu, S.H., “On the Development of a Hole Filling Algorithm for Triangular Meshes”, Journal of the Chinese Institute of Engineers, Vol 30, pp. 877-889 (2007).
[95] Wang, J. and Oliveira, M.M., “Filling Holes on Locally Smooth Surfaces Reconstructed from Point Clouds”, Image and Vision Computing, Vol 25, pp. 103-113 (2007).
[96] Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N. and Azariadis, P., “3D Mesh Segmentation Methodologies for CAD Applications”, Computer-Aided Design & Applications, Vol. 4, No. 6, pp. 827-841 (2007).
[97] Huang, C.Y., Lai, J.Y. and Lin, K.Y., “Automatic construction of quadrilateral network of curves from triangular meshes”, Advances in Engineering Software, Vol. 41, pp. 388-400 (2010).
[98] Semenova, I.B., Savchenko, V.V. and Hagiwara, I., “Improvement of triangular and quadrilateral surface meshes”, In: Proceedings of the 14th International Conference on Computer Graphics and Vision, pp. 79–87 (2004).
[99] Hsu, S.H. and Lai, J.Y., “Extraction of geodesic and feature lines on triangular meshes”, Int J Adv Manuf Technol, Vol 42, pp. 940-954 (2009).
指導教授 賴景義(Jiing-Yih Lai) 審核日期 2011-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明