博碩士論文 983203092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.133.141.6
姓名 張智堯(Chih-yao Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 螺旋式垂直軸風力機的氣動力模擬
(Aerodynamics Simulation for the Spiral-H-Rotor Vertical Axis Wind Turbine)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 微電滲泵之暫態熱流研究★ 高解析熱氣泡式噴墨頭墨滴成形觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本數值研究採用計算軟體FLUENT分析螺旋式垂直軸風力機(10 kW與50 kW)葉片做氣動力分析,由於葉片外型特殊,必須利用三維數值模擬才可得知其複雜的氣動力型態。包括兩項分析工作:(1)探討葉片氣動力特性,包含尖端速度比與不同的入口風速的螺旋式垂直軸風機的輸出功率係數;(2)分析推力係數與方位角的關係,並呈現風機之局部速度、壓力與渦度的分佈,以辨識這些變數對於風機推力的影響。預測顯示當葉片經過轉子中心區之低速區或是渦度梯度變化大之區域皆會大幅降低葉片的推力。此外10 kW風力機預測之最大功率係數(0.356)已相當接近水平軸風機之效率,因此建議風力機操作應在TSR=2~3以保有最大功率。
此外,本研究也針對中型螺旋式風力機(50 kW)之葉片做分析,50 kW風力機外形是依據10 kW風力機葉片,為了減少葉片尖端渦流的影響,加入翼尖小翼(如同飛機固定翼之翼尖小翼)的設計與主葉片為垂直安裝,以達提升性能之目的。模擬顯示此風力機最大功率係數接近0.4,但隨風速增加則功率係數曲線下降。模擬結果可知翼尖小翼可增加葉片尖端之高壓與低壓區域,使葉片的壓力差增加,且可降低轉子區後半圓之渦度梯度變化,並提升葉片的有效推力以及最大功率係數。此項氣動力結果可提供螺旋式垂直軸風力機葉片的設計。
摘要(英) This numerical study uses computational software FLUENT to analyze aerodynamics characteristic of vertical axis wind turbines (VAWT) with spiral-H-rotor (two capacities: 10 kW and 50 kW). Because of the unique blade shape, three-dimensional numerical simulations must be utilized for understanding the complex aerodynamic pattern. Two analysis are investigated: (1) study the aerodynamic of blade, including various combination of tip speed ratio and inflow wind velocity for this VAWT, in order to realize the characteristic of wind turbines; (2) analyze the relation between thrust coefficient at different azimuthal angle, and display the distribution of local velocity, pressure and vorticity to identify these variables influence on thrust. Results show that when the blades pass through the area of low speed in the center of the rotor or the area of large variation of vorticity, the thrust of blades decrease significantly. In addition, the predicted power coefficient of 10 kW wind turbine (0.356) is close to the value of horizontal axis wind turbine, and the tip speed ratio is recommended to operate around two to three to have maximum power performance.
Another analysis is made for a new blade design of 50 kW wind turbine, which is enlarged from the shape of 10 kW with a winglet attached on the blade tip. The winglet arrangement (similar as it on the fixed wing layout) can reduce the tip vortex strength so that to enhance the power output of wind turbine. Predicted maximum power coefficient close to 0.4 and this value decreases as the incoming wind speed decreases. Simulation shows the blade wih winglet increase both the high and low pressure zone near the blade tip, and thus the amount of pressure difference is enlarged. In addition, the strength of vorticity gradient also reduces in the back rotating circular region. This study can provide useful aerodynamic data for the design of new spiral-H-rotor VAWT.
關鍵字(中) ★ 螺旋式風力機
★ 三維氣動力分析
★ 垂直軸風力機
★ 翼尖小翼
★ 計算流體力學
關鍵字(英) ★ Winglet
★ Vertical axis wind turbine
★ Three-dimensional aerodynamics analysis
★ Spiral-H-rotor
★ Computational fluid dynamics
論文目次 摘要......................................................i
Abstract.................................................ii
致謝.....................................................iv
目錄......................................................v
圖目錄..................................................vii
表目錄...................................................xi
符號說明................................................xii
第一章 緒論...............................................1
1.1 風力渦輪機的演進......................................1
1.2 文獻回顧..............................................4
1.2.1 實驗研究............................................6
1.2.2 模擬研究............................................7
1.2.3 翼尖小翼的研究......................................8
1.3 研究動機與目的.......................................11
1.4 論文架構.............................................12
第二章 風力機的氣動力....................................13
2.1 Betz極限與動量理論...................................13
2.2 座標系統.............................................16
2.3 垂直軸風力機氣動特性.................................18
2.3.1 紊流尾流對於氣動力的影響...........................18
2.3.2 尖端渦流...........................................21
2.3.3 動態失速...........................................23
2.3.4 翼形彎曲度的影響...................................26
2.4 螺旋式葉片的氣動力特性...............................27
第三章 數值模擬方法......................................29
3.1 計算流體力學.........................................29
3.1.1 FLUENT軟體介紹.....................................29
3.2 幾何外型與基本假設...................................30
3.3 統御方程式...........................................31
3.4 紊流模型.............................................32
3.4.1 標準k-ε紊流模式....................................32
3.4.2 RNG k-ε紊流模式....................................33
3.4.3 Realizable k-ε紊流模式.............................35
3.5 壁面函數.............................................37
3.6 邊界條件.............................................39
3.7 計算方法.............................................40
3.7.1 求解過程...........................................41
3.7.2 速度與壓力耦合.....................................42
3.7.3 網格生成...........................................43
3.7.4 收斂標準...........................................45
第四章 數值模擬驗證......................................47
4.1 網格獨立性分析.......................................47
4.2 邊界距離驗證.........................................50
第五章 不同風機性能比較..................................53
5.1 10 kW風機............................................53
5.1.1 風機性能與流場分析.................................53
5.2 50 kW風力機..........................................63
5.2.1 幾何外型...........................................63
5.2.2 風機性能與流場分析.................................64
第六章 結論與建議........................................81
6.1 結論.................................................81
6.2 建議.................................................83
參考文獻.................................................84
參考文獻 孫耘 (2007),新型垂直軸風力發電系統之設計與實現,淡江大學電機工程學系碩士論文。
宏銳公司 http://www.iwind.com.tw/
鄭仁杰,苗君易,陳時鈞,胡志宗,蘇信彰 (2010),可調仰角葉片應用於垂直軸風力機之數值研究,第17屆全國計算流體力學研討會,桃園縣石門。
Amet, E., Maitre, T., Pellone, C., Achard, J. L. (2009) 2D numerical simulations of blade-vortex interaction in a Darrieus turbine, J. Fluids Eng., 131:1-15.
ANSYS, ANSYS Fluent user’s guide, ANSYS, Inc., 2009.
Baker, J. R. (1983) Features to aid or enable self starting of fixed pitch low solidity vertical axis wind turbines, J. Wind Eng. Ind. Aerodyn. 15:369-380.
Betz, A. (1926) Windenergie und Ihre Ausnutzung durch Windmüllen. Vandenhoeck and Ruprecht, Gottingen, Germany.
Brochier, G., Fraunie, P., Beguier, C., Paraschivoiu, I. (1986) Water channel experiments of dynamic stall on Darrieus wind turbine blades, J. Propulsion and Power, 2:445-449.
Darrieus, G. J. M. (1931) United States Patent, No. 1835018, Dec. 8.
Døssing, M. (2007) Vortex lattice modelling of winglets on wind turbine blades, Risø National Laboratory, Risø-R-1621.
Enercon GmbH, http://www.enercon.de/de-de/
Eriksson, S., Bernhoff, H., Leijon, M. (2008) Evaluation of different turbine concepts for wind power. Renewable and Sustainable Energy Reviews, 12(5): 1419-1434.
Gaunaa, M., Johansen, J. (2007) Determination of the maximum aerodynamic efficiency of wind turbine rotors with winglets, J. Physics, Conference Series 75, 012006:1-12.
Howell, R., Qin, N., Edwards, J., Durrani, N. (2010) Wind tunnel and numerical study of a small vertical axis wind turbine, Renewable Energy, 35:412-422.
Hwang, I. S., Min, S. Y., Jeong, I. O., Lee, Y. H., Kim, S. J. (2006) Efficiency improvement of a new Vertical Axis Wind Turbine by individual active control of blade motion, SPIE 13th Annual Symposium, 6173:316–323.
Manwell, J. F., McGowan, J. G., Rogers, A. L. (2002) Wind Energy Explained: Theory, Design and Application, John Wiley & Sons.
Maughmer, M.D. (2001) The design of winglets for high-performance sailplanes, AIAA 2001-2406.
McCroskey, W. H. (1982) Unsteady airfoils, Ann. Rev. Fluid Mech., 14:285-311.
Mertens, S., Kuik, G. van, Bussel, G. van (2003) Performance of an H-Darrieus in the skewed flow on a roof, J. Solar Energy Eng., 125:433-440.
Dominy, R., Lunt, P., Dominy, J. (2006) Self-starting capability of a Darrieus turbine, Proc. IMechE, 221:111-120.
Paraschivoiu, I. (2009) Wind Turbine Design with Emphasis on Darrieus Concept, Presses Internationals Polytechnique.
Shibuya, S., Fujisawa, N., Takano, T. (1999) Visualization and PIV measurement of unsteady flow around a Darrieus wind turbine in dynamic stall, 7th International Conference on Nuclear Eng., 1-4:379-386.
Shibuya, S., Fujisawa, N. (2001) Observations of dynamic stall on Darrieus wind turbine blades, J. Wind Eng., 89:201-214.
Simão Ferreira, C. J., van Bussel, G. J. W., van Kuik, G. A. M. (2006) Wind tunnel hotwire measurements, flow visualization and thrust measurement of a VAWT in skew, J. Solar Energy Eng., 128:487-496.
Simão Ferreira, C. J. (2009) The near wake of the VAWT 2D and 3D views of the VAWT aerodynamics, Ph.D. Thesis, Delft University of Technology.
Strickland, J. H., Webster, B. T., Nguyen, T. (1979) A vortex model of the Darrieus turbine: an analytical and experimental study, ASME J. Fluids Eng., 101:500-505.
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2011-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明