博碩士論文 983203086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.191.189.124
姓名 莊英鍠(Ying-Huang Zhuang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鑲入鎳-鑽石顆粒複合鍍層的竹碳工具之研發及其研磨加工特性研究
(Inserts into the Ni - Diamond Particles of Bamboo Carbon Composite of Coating Tools and Grinding Characteristics of Research and Development)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究為製作一種竹碳複合電鍍研磨工具,對矽晶圓試片進行研磨拋光,其利用竹碳具有導電性以及結構中含有複數個中空維管束,將鎳-鑽石電鍍液利用吸取式,輸入竹碳維管束內部進行複合電鍍,現今產業上有許多價格昂貴、高精密、製作不易之材料,因此越來越注重對於材料在加工或使用上的有效利用、管理以及保護。竹碳材料有導電性、脆性以及內部具有中空管束,可利用複合電鍍法將磨料鍍於中空管束內,製成竹碳研磨工具。
竹碳研磨工具,在加工過程中,無需外加研磨料,竹碳在加工接觸面上會自行剝落而產生新的研磨粒持續對工件表面進行加工,形成內部補給研磨粒的機制,既節省設備、時間、磨料,又可得到良好的加工品質。
本研究成功利用吸取式配合適當之複合電鍍參數,製作出不同鑽石含量的竹碳複合電鍍研磨工具,能夠在竹碳上複合電鍍上豐富的研磨顆粒,鎳-鑽石複合鍍層重量為71.46mg、由EDS 分析得知鎳-鑽石複合鍍層中鑽石研磨顆粒含量為89.8wt%。
在研究結果中得知雖然在電流0.05A、時間10min、濃度10wt%可得到
較高的鑽石研磨顆粒含量,但在研磨實驗中結果卻不理想,反而是電流0.05A、時間3min、濃度1wt%時,所製作出之較低含量鑽石研磨顆粒之竹碳工具,加工後表面粗糙度Ra 0.026μm、改善率為89.71%,證明在製作竹碳工具,只需要較短的時間以及較低的濃度,就可有效降低表面粗糙度將試片加工至鏡面,無疑大幅的降低了成本。
摘要(英) In this study, production of a bamboo carbon composite plating grinding tools, the test piece for the silicon wafer polishing, the use of electrically conductive bamboo carbon structure containing a plurality of hollow vascular bundle, the Ni - plating bath using the diamond draw type,
input within the composite vascular bundle of bamboo carbon plating.
There are many industries today are expensive, high precision, making the material difficult, so more and more emphasis on the material in the processing or the use of effective use, management and protection. Bamboo
conductive carbon material, brittle and hollow tubes, composite plating method can be used in the hollow tubes coated abrasives, the grinding tools made of bamboo carbon.
In the process, Bamboo carbon grinding tools, no external abrasive, in the processing of bamboo carbon contact surface will generate a new self-peeling and grinding grain for processing continuous on the surface to form a supply of abrasive particles within the self-sharpening mechanism, both to save equipment, time, abrasive, but also get good processing quality.
In this study, successful use of draw-style composite plating with appropriate parameters to produce different levels of bamboo carbon composite diamond plated grinding tools, bamboo carbon composite abrasive particles plated on the rich, composite coating weight 71.46mg, diamond abrasive particle content of 89.8wt%.Although the study results that the current 0.05A, time 10min, receive a higher concentration of 10wt% diamond abrasive particle content, but the results of the experiment in the ground is not ideal, but the current 0.05A, time of 3min, the concentration of 1wt% when produced by a low content of abrasive particles of bamboo carbon diamond tools, surface roughness after processing Ra 0.026μm, improved rate of 89.71%, that tool in the production of bamboo carbon, only a short time and low concentrations, can effectively reduce the surface roughness of the specimen to mirror
processing, dramatically reducing costs.
關鍵字(中) ★ 竹碳
★ 維管束
★ 複合電鍍
★ 拋光
★ 矽晶圓
關鍵字(英) ★ Bamboo charcoal
★ porosities
★ polishing
★ wafer
★ co-deposition
論文目次 目錄
摘要 ………………………………………………………………………...i
Abstract ……………………………………………………………………...ii
謝誌 ………………………………………………………………………...iv
目錄…………………………………………………………………………..v
圖目錄 …………………………………………………………………….viii
表目錄 ……………………………………………………………………..xii
第一章 緒論…………………………………………………………………..1
1-1 研究背景 ........................................................................................ 1
1-2 研究動機與目的 ............................................................................. 4
1-3 文獻回顧 ........................................................................................ 5
1-3-1 複合電鍍 .............................................................................. 5
1-3-2 晶圓拋光 .............................................................................. 6
1-4 研究架構 ........................................................................................ 7
第二章 基本原理與介紹…………………………………………………….9
2-1 竹碳 ................................................................................................ 9
2-1-1 竹碳簡介 ................................................................................ 9
2-1-2 竹碳之製程 ......................................................................... 10
2-1-3 竹碳特性與應用 .................................................................. 11
2-1-4 竹碳結構 ............................................................................. 15
2-2 複合電鍍原理 ............................................................................... 17
2-3 矽晶圓特性介紹 ........................................................................... 20
2-5 機械拋光機制 ................................................................................ 24
2-6 二體與三體接觸滑動 ................................................................... 26
第三章 實驗設備、機構與流程 ...............................................................29
3-1 實驗相關設備 ............................................................................... 29
3-2 實驗材料 ....................................................................................... 33
3-2-1 氨基磺酸鎳鍍液 ................................................................. 33
3-2-2 鑽石磨料 .............................................................................. 34
3-2-3 矽晶圓試片 .......................................................................... 35
3-3 實驗機構 ...................................................................................... 35
3-3-1 竹碳複合電鍍機構與加工方法 ........................................... 35
3-3-2 竹碳研磨機構與加工方法 .................................................. 38
3-3-3 竹碳試片製作 ..................................................................... 41
3-4 實驗參數設定 ............................................................................... 42
3-4-1 竹碳複合電鍍實驗設定 ....................................................... 42
3-4-2 竹碳研磨工具拋光實驗設定 .............................................. 44
3-4-3 實驗流程 ..............................................................................46
第四章 結果與討論 ...................................................................................48
4-1 製程參數對竹碳複合電鍍後重量之影響 ..................................... 48
4-1-1 電流參數對竹碳複合電鍍磨粒附著之影響 ....................... 48
4-1-2 濃度參數對竹碳複合電鍍磨粒附著之影響 ....................... 53
4-1-3 時間參數對竹碳複合電鍍磨粒附著之影響 ....................... 58
4-2 複合電鍍製程參數對竹碳工具之拋光特性影響 ........................ 62
4-2-1 製程電流對竹碳工具加工之影響 ...................................... 62
4-2-2 製程濃度對竹碳工具加工之影響 ...................................... 67
4-2-3 製程時間對竹碳工具加工之影響 ...................................... 72
4-3 竹碳複合電鍍研磨材之研磨參數影響探討 ................................. 76
4-3-1 無施加搖擺 ......................................................................... 76
4-3-1-1 拋光研磨盤轉速對表面粗糙度之影響 ................... 76
4-3-1-2 馬達轉速對表面粗糙度之影響 ............................. 80
4-3-1-3 試片表面形貌觀察 ................................................. 83
4-3-2 施加搖擺 .............................................................................. 87
4-3-2-1 加工時間對表面粗糙度之影響 ............................. 87
4-3-2-2 拋光研磨盤轉速對表面粗糙度之影響 .................. 91
4-3-2-3 馬達轉速對表面粗糙度之影響 ............................. 94
4-3-2-4 試片表面形貌觀察 ………………………….…….97
第五章 總結論……………………………………………………………102
參考文獻 .………………………………………………………………...104
參考文獻 參考文獻
1. 石原茂久,「熱機能性木質複合材料素材開發」,第51 回木研公開演講會,23~29 頁,京都大學,日本,1996 年8 月。.
2. M.Ohata, M.Aoki,S.Yoshizawa ,“Effect of carbonization condition on microstructure of bamboo charcoal with practical furnace”, Meisei University
3. 許玲瑛,「多階段炭化對孟宗竹炭基本性質及吸附能力之影響」,國立中興大學,碩士論文,民國97 年。
4. 江?慧、??升、?本?、岳永德和???,「炭化?度?竹炭微??构及?性能的影?」,新型炭材料,第十九卷第四期,249~253 頁,93年12 月。
5. 劉正字,「竹炭的功能及其利用」,台灣林業,第三十三卷第三期,30~36頁,96 年6 月。
6. 朱江?、?正宏、康?宇、傅金和和岳永德,「竹炭的性能和?用研究?展」,材料??,第二十卷第四期,41~43 頁,95 年4 月。
7. 戴嘉璐、郭興忠、楊 輝和涂志龍,「竹炭微結構的研究」,材料科學與工程學報,第二十五卷第五期,743~745 頁,96 年1 月。
8. 藍浩繁、賴宏亮和鄧維豐,「孟宗竹竹炭性質之研究」,作物、環境與生物資訊,第五期,180~186 頁,97 年9 月。
9. K. H. Hou, M. D. Ger, L. M. Wang and S. T. Ke, The wear behaviour of electro-codeposited Ni–SiC composites, Wear, Vol. 253 pp. 994-1003, 2002.
10. 秋能信,「矽晶圓之超精密輪磨及機化學拋光技術」,機械工業雜誌,85
年5月。
11. M. Ghouse, M. Viswanathan and E. G. Ramachandran, Occlusion Plating of Copper-Silicon Carbide Composites, Metal Finishing, Vol. 78, pp. 331-35, 1980.
12. J. Zahavi amd J. Hazan, Electrodeposited Nickel Composites Containing Diamond Particles, Plating Surface Finishing , Vol. 70, pp. 57-61, 1983.
13. E. C. Lee and J. W. Choi, A study on the mechanism of formation of electrocodeposited Ni–diamond coatings, Surface and Coatings Technology, Vol. 148, pp. 234-240, 2001.
14. L. Du, B. Xu, S. Dong, H. Yang and W. Tu, Study of tribological characteristics and wear mechanism of nano-particle strengthened nickel-based composite coatings under abrasive contaminant lubrication, Wear, Vol. 257, pp. 1058-1063, 2004.
15. L. Wang, Y. Gao, H. Liu, Q. Xue and T. Xu, Effects of bivalent Co ion on the co-deposition of nickel and nano-diamond particles, Surface & Coatings Technology, Vol. 191, pp. 1-6, 2005.
16. T. Tsubota, S. Tanii, T. Ishida, M. Nagata and Y. Matsumoto, Composite electroplating of Ni and surface-modified diamond particles with silane coupling regent, Diamond & Related Materials, Vol. 14, pp. 608-612, 2005.
17. H. K. Lee, H. Y. Lee and J. M. Jeon, Codeposition of micro- and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating, Surface & Coatings Technology, Vol. 201, pp. 4711-4717, 2007.
18. N. K. Shrestha, T. Takebe and T. Saji, Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings, Diamond & Related Materials, Vol. 15, pp. 1570-1575, 2006.
19. H. K. Park, H. Onikura, O. Ohnishi and A. Sharifuddin, Development of micro-diamond tools through electroless composite plating and investigation into micro-machining characteristics, Precision Engineering, Vol. 34, pp. 376-386, 2010.
20. J. C. Hung, W. C. Wu, B. H. Yan, F. Y. Huang and K. L. Wu, Fabrication of a micro-tool in micro-EDM combined with co-deposited Ni–SiC composites for micro-hole machining, Journal of Micromechanics and Microengineering, Vol. 17, pp. 763-774, 2007.
21. F. A. Khalid, O. Beffort, U. E. Klotz, B.A. Keller and P. Gasser, Microstructure and interfacial characteristics of aluminium–diamond composite materials, Diamond and Related Materials, Vol. 13, pp. 393-400, 2004.
22. L. Zhang and Hiroaki Tanaka, Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding, Tribology International, Vol. 31 8, pp. 425-433, 1998.
23. J. Grillaert, M. Meuris, N. Heylen, K. Devriendt and E. Vrancken, Modelling step height reduction and local removable rates based on pad-substrate interactions, CMP-MIC conference, California, pp.79, 1998.
24. N. Kobayashia, Y. Wub and M. Nomurab, Precision treatment of silicon wafer edge utilizing ultrasonically assisted polishing technique, Journal of Materials Processing Technology, Vol. 201, pp. 531-535, 2007.
25. A. Q. Biddut, L. C. Zhang, Y. M. Ali and Z. Liu, Damage-free polishing of monocrystalline silicon wafers ithout chemical additives, Scripta Materialia, Vol. 59, pp.1178-1181, 2008.
26. M. Tokoro, Y. Aiyama, M. Masuko, A. suzuki, I. Ito and K. Yamamoto, Improvement of tribological characteristics under water lubrication of LC-coatings by surface polishing, Wear, Vol. 267, pp. 2167-2172, 2009.
27. M. G. Hamblin and G. W. Stachowiak, A multi-scale measure of particle abrasivity, and its relation to two-body abrasive wear, Wear, Vol. 190, pp. 190-196, 1995.
28. Y. Tani, T. Okuyama S. Murai, Y. Kamimura and H. Sato, Development of silica polyvinyl alcohol wheels for wet mirror grinding of Silicon wafer, Annals of the CIRP, Vol. 56, 361-364, 2007.
29. T. Kurobe, T. Fujimura, and H. Ikeda, Nanopolishing of silicon wafers using ultrafine-dispersed diamonds, Physics of the Solid State, Vol. 46, pp. 751-754, 2004.
30. T. J. Chen, Y. C. Chiou and R. T. Lee, Grinding characteristics of diamond film using composite electro-plating in-process sharpening method, International Journal of Machine Tools & Manufacture, Vol. 49, pp. 470-477, 2009.
31. A. Une, K. Yoshitomi, M. Mochida and N. Ogasawara, Influence of pin chuck ring seals and polishing steps on wafer flatness, Microelectronic Engineering, Vol. 87, pp. 1646-1649, August 2010.
32. D. H. Hwang, D. E. Kim and S. J. Lee, Influence of wear particle interaction in the sliding interface on friction, Wear, Vol. 225-229, pp. 427-439, 1999.
33. Z. Zhang , Y. Meng, D. Guo, L. Wu, Y. Tian and R. Liu, Material removal mechanism of precision grinding of soft-brittle CdZnTe wafers, Int J Adv Manuf Technolr, Vol. 46, pp. 563-569, 2010.
34. Z. Zhong, Surface finish of precision machined advanced materials, Journal of Materials Processing Technology, Vol. 122, pp. 173-178, 2002.
35. J. Janus, G. Fauxpoint, Y. Arntz, H. Pelletier and O. Etienne, Surface roughness and morphology of three nanocomposites after two different polishing treatments by a multitechnique approach, Dental Materials, Vol. 26, pp. 416-425, May 2010.
36. R. I. Trezona, D. N. Allsopp and I. M. Hutchings, Transitions between two-body and three-body abrasive wear: influence of test conditions in the microscale abrasive wear test, Wear, Vol. 225-229, pp. 205-214, 1999.
37. J. D. Gates, Two-body and three-body abrasion: A critical discussion, Wear, Vol. 214, pp. 139-146, 1998.
38. A. P. Harsha and U. S. Tewari, Two-body and three-body abrasive wear behaviour of polyaryletherketone composites, Polymer Testing, Vol. 22, pp. 403-418, 2003.
39. P. Agrawal, R. Narulkar, S. Bukkapatnam, L. M. Raff and R. Komanduri, A phenomenological model of polishing of silicon with diamond abrasive, Tribology International, Vol. 43, pp. 100-107, 2010.
40. 黃韋翰,「新式超精密拋光機之矽晶圓拋光特性研究」,國立中山大學,碩士論文,民國92年。
41. N. Kobayashi, Y. Wu, M. Nomura and T. Sato, Precision treatment of silicon wafer edge utilizing ultrasonically assisted polishing technique, Journal of Materials Processing Technology, Vol. 201, pp. 531-535, 2008.
42. 林秉威,「竹炭拋光矽晶圓特性之研究」,國立中央大學,碩士論文,民國99年。
43. I. Zarudi and B. S. Han, Deformation and material removal rate in polishing silicon wafers, Journal of Materials Processing Technology, Vol. 140, pp. 641-645, 2003.
44. N. Gulielmi, Kinetics of the Deposition of inert particles from electrolytic baths, Journal of the Electrochemical Society, Vol. 119, pp. 1009-1012, 1972.
45. J. P. Celis, J. R. Roos and C. Buelens, A mathematical model for the electrolytic codeposition of particles with a metallic matrix, Journal of the Electrochemical Society, Vol. 134, pp. 1402-1408, 1987.
46. B. J. Hwang, C. S. Hwang, “Mechanism of codeposition of silicon carbide with electrolytic cobalt, Journal of the Electrochemical Society, Vol. 140, pp. 979-984, 1993.
47. C. Chen, M. Leipold, Fracture toughness of silicon, American Ceramic Society Bulletin, vol. 59, pp.469-472, 1980.
48. P. B. Hirsch, 「脆性-延性遷移基礎」,日本????. 第二十九卷,5頁,89 年。
49. L. M. Cook, Chemical processes in glass polishing, Journal of Non-Crystalline Solids, Vol. 120, pp.152-171, 1990.
50. 張國龍,「矽晶圓拋光時溫度及磨粒對表面性質之影響」,國立清華大學,博士論文,民國88 年。
指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2011-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明