博碩士論文 983203022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.143.235.212
姓名 魏兆廷(Chao-ting Wei)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 純鋁與鋁鎂矽合金微結構對超音波衰減率的影響
(The ultrasonic attenuation study for dislocation, grainboundary and precipitates morphologies of pure aluminum and Al-Mg-Si alloy.)
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗使用超音波檢測法量測5N純鋁與Al6063鋁合金材料的超音波衰減率。討論基地中晶界與晶界內基地對音波衰減率的影響( 值與B值)。藉由背向散射電子繞射分析(Electron Back-Scatter Diffraction,EBSD)量測不同角度晶界,將晶界對衰減率的影響區分為低角度(0 o ~ 5o)、中角度(5 o ~ 15o)、高角度(15 o ~ 65o)晶界長度比例參數對衰減率的影響。晶界對衰減率的影響為( 值),B值為基地對衰減率的影響。經計算超音波訊號與純鋁內部差排的關係後,音波衰減率對差排密度的影響較靈敏,但差排密度與差排環的長度及密度不易精確計算,因此容易在計算上發生誤差。
  超音波衰減率的 dB(將20MHz超音波衰減率和5MHz超音波衰減率相減)可以增加衰減率變化的敏感度。觀察Al6063經不同降溫速率的退火後晶粒尺寸的變化與 dB成正比。 dB與Al6063自然時效的微硬度變化可看出兩個階段:第一階段為團聚物(Mg-cluster、Si-cluster、co-cluster)的成核及生長,衰減率差值隨著時效時間增加(微硬度增加)而遞減;第二階段為團聚物的穩定成長或整合,此階段微硬度及衰減率差值變化不明顯。
摘要(英) The study used ultrasonic testing to obtain the attenuation of 99.999% pure aluminum and 6063 aluminum alloy. As the result, the measured attenuation is sensitively in varied dislocation density or dislocation loop, so that would increase the calculation errors. Furthermore, we measure attenuation and separate into two parts for discuss: i) grain boundaries set as ; The grain boundary on attenuation were divided to varied angle boundaries (low angle: 0 o ~ 5o, middle angle: 5 o ~ 15o, high angle: 15 o ~ 65o). The angle of grain boundaries of 5N pure Al was observed by using electron back scatter diffraction (EBSD), and estimated the relation between the grain boundary fractions and attenuation. And ii) matrix set as B value.
  The subtraction of the ultrasonic attenuation of high frequency and low frequency would increase the sensitivity of the difference of the attenuation. The change of grain size of annealed Al6063 by different cooling rate can observed from the subtraction of the ultrasonic attenuation. There are two stages were observed from the subtraction of the ultrasonic attenuation varying micro-hardness of Al6063 during T4 process (nature aging). One is the nucleation and growth of solute atoms (Mg-cluster、Si-cluster). The subtraction decreases with the increasing of the aging time. The other stage is the steady growth or coalescence of clusters. The changes of the subtraction and micro-hardness are unapparent.
關鍵字(中) ★ 自然時效
★ 晶界
★ 超音波衰減率
★ 晶粒尺寸
關鍵字(英) ★ ultrasonic attenuation
★ nature aging
★ grain boundary
★ grain size
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 前言 1
第二章 理論探討與文獻回顧 2
2-1  超音波檢測(Ultrasonic Testing)原理[1][2][3] 2
2-1-1 音波基本性質 2
2-1-2 超音波量測性質 3
2-1-3 超音波量測材料微結構之相關研究 4
2-1-3-1晶粒尺寸對超音波訊號的影響 4
2-1-3-2微粒子對超音波訊號的影響 6
2-1-3-3差排對超音波訊號的影響 7
2-2  差排應力場理論簡述[16] 11
2-2-1 旋轉差排(Screw dislocation)的應力場計算 11
2-2-2 刃狀差排(Edge dislocation)的應力場計算 13
2-2-3 晶界(Grain boundary)的應力場計算 13
2-3  5N純鋁與6063鋁合金簡介 15
2-3-1 5N純鋁簡介[17][18] 15
2-3-2 5N純鋁晶界強化簡介 16
2-3-3 6063鋁合金簡介 17
第三章 實驗方法與步驟 21
3-1  實驗目的 21
3-2  實驗材料與試片準備 21
3-3  實驗設備 21
3-4  實驗步驟 22
第四章 結果與討論 28
4-1  近場距離對純鋁超音波量測的影響 28
4-2  純鋁微結構對超音波量測訊號的影響 30
4-2-1 超音波訊號與純鋁內部差排的關係 30
4-2-2 5N純鋁微結構對超音波衰減率的影響 31
4-3  Al6063微結構對超音波量測訊號的影響 44
4-3-1 利用直接觀測法討論Al6063純鋁微結構對超音波衰減率的影響 46
4-3-2 Al6063退火冷卻速率對超音波衰減率的影響 53
4-3-3 Al6063析出強化對超音波衰減率的影響 54
第五章 結論 56
參考文獻 57
附錄 60
一、 之級數展開[16]: 60
二、純鋁材料 Ratio計算結果比較 63
三、不同型式晶界應力場計算結果比較 64
參考文獻 [1] T.G. Leighton, The Acoustic Bubble, Institute of Sound and Vibration Research, Southampton, pp.3-10, pp.16-23, pp.30-31, 1994.
[2] American Society for Nondestructive Testing, Nondestructive Testing Handbook, volume 7, second edition, pp.39, pp.170-173, pp.731-744, 1991.
[3] 陳永增,鄧惠源,非破壞檢測,全華圖書有限公司,台北,4-22-4-39頁, 民國88 年。
[4] E. P. Papadakis, “Revised Grain-Scattering Formulas and Tables”, The journal of the acoustical society of America, volume 37, number 4, pp.703-710, April 1965.
[5] X.G. Zhang, et al., “Ultrasonic attenuation due to grain boundary scattering in copper and copper-aluminum”, J. Acoust. Soc. Am., volume 116, number 1, pp.109-116, March 2004.
[6] R. Unal, “The mean grain size determination of boron carbide(B4C)-aluminum(Al) and boron carbide(B4C)-nickel(Ni) composites by ultrasonic velocity technique”, Materials Characterization, volume 56, pp.241-244, 2006.
[7] R. Ambardar, “Effect of porosity, pore diameter and grain size on ultrasonic attenuation in aluminum alloy castings”, Insight: Non-Destructive Testing and Condition Monitoring, volume 37, number 7, pp.536-543, July 1995.
[8] R. Ambardar, “Ultrasonic velocity measurement to assess casting quality”, Insight: Non-Destructive Testing and Condition Monitoring, volume 38, number 7, pp.502-508, July 1996.
[9] C.H. , “Investigation of microstructure-ultrasonic velocity relationship in SiCp-reinforced aluminum metal matrix composites”, Materials Science and Engineering A, pp.29-35, 2003.
[10] J. Stella, et al., “Characterization of the sensitization degree in the AISI 304 stainless steel using spectral analysis and conventional ultrasonic techniques”, NDT&E International, volume 42, pp.267-274, 2009.
[11] A. Granato, et al., “Theory of Mechanical Damping Due to Dislocations”, Journal of applied physics, volume 27, number 6, pp.583-593, June 1956.
[12] Akira Hikata, et al., “Sensitivity of Ultrasonic Attenuation and Velocity Changes to Plastic Deformation”, Journal of applied physics, volume 27, number 4, pp.396-404, April 1956.
[13] G.T. Fei, et al., “The relation between the variation of stress, energy loss, ultrasonic attenuation, and dislocation configuration in aluminum during the early stages of fatigue”, Phys. Stat. Sol. (a), volume 140, pp.119-125, 1993.
[14] G.T. Fei, et al., “Ultrasonic attenuation study on the interaction between dislocations and point defects in 99.999 wt% Al and Al-0.025 wt% Mg”, Phys. Stat. Sol. (a), volume 153, pp.323-328, 1996.
[15] J. Wang, et al., “Sensitivity of ultrasonic attenuation and velocity change to cyclic deformation in pure aluminum”, Phys. Stat. Sol. (a), volume 169, pp.43-48, 1998.
[16] J.P. Hirth, et al., Theory of dislocations, second edition, Wiley, New York, pp.59-61, pp.73-76, pp.731-734, 1982.
[17] ASM International, ASM Specialty Handbook: Aluminum and Aluminum Alloys, J.R. Davis, ASM International, pp.639-644, pp.686-687, 1993.
[18] ASM International, Aluminum: Properties and Physical Metallurgy, J.E. Hatch, ASM International, pp.1-19, pp.109, 1984.
[19] E.O. Hall, ”The deformation and ageing of mild steel”, Proc. Phys. Soc. B, volume 64, pp.747-753, 1951.
[20] N.J. Petch, “The Cleavage Strength of Polycrystals”, Journal of Iron and Steel Institute, volume 174, p 25-28, 1953.
[21] N. Hansen, “The effect of grain size and strain on the tensile flow stress of aluminum at room temperature”, Acta metallurgica, volume 25, pp.863-869, 1977.
[22] 日本輕金屬學會委員, 鋁合金之組織與性質, 日本輕金屬學會, pp.278, 1991.
[23] W.H. Cubberly, Heat treating, 9th ed., Metals Handbook, vol.22, American Society for Metals, Metals Park, OH, pp. 674– 676,1981.
[24] K. Masuda, et al., “Microstructures of aged Al–Mg–Si alloys” , Journal of Japan Institute of Light Metals, volume 53, pp.457-462, 2003.
[25] M. Murayama, et al., “The Effect of Cu Additions on the Precipitation Kinetics in an Al-Mg-Si Alloy with Excess Si”, Metallurgical and materials transactions A, volume 32A, pp.239-246, 2001.
[26] M. Murayama, et al., “Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys”, Acta materialia, volume 47, pp.1537-1548, 1999.
[27] M. Murayama, et al., “Atom probe studies on the early stages of precipitation in Al–Mg–Si alloys”, Materials Science and Engineering A, volume 250, pp.127-132, 1998.
[28] A. Cuniberti, et al., “Influence of natural aging on the precipitation hardening of an -AlMgSi alloy”, Materials Science and Engineering A, volume 527, pp.5307-5311, 2010.
[29] T. Inoue, et al., “Effect of initial grain sizes on hardness variation and strain distribution of pure aluminum severely deformed by compression tests”, Acta Materialia, volume 56, pp. 6291–6303, 2008.
[30] ASTM International, “E112 – 10 Standard test methods for determining average grain size”, pp.10, 2010.
指導教授 施登士(Teng-shih Shih) 審核日期 2011-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明