博碩士論文 983206019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:52.15.116.59
姓名 杜玉琴(Yu-Chin Du)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 鄰苯二甲酸酯類和腐植酸在多壁奈米碳管上的吸附
(Adsorption of phthalate esters and humic acid on MWCNTs)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 因奈米碳管有高的比表面積,可提供較多之吸附位置,且經過改質過之碳管的物化特性會被改變,進而影響吸附污染物之能力。因此,本研究將多壁奈米碳管(A-MWCNT)經過酸、鹼改質劑改質後,在碳管表面鍵結官能基,探討對鄰苯二甲酸二甲酯(DMP)、鄰苯二甲酸二乙酯(DEP)及腐植酸(HA)之含苯環化合物的吸附影響及吸附機制。碳管定性分析之結果發現,經過改質過後之含氧官能基、比表面積及孔洞體積,有增加的趨勢。在SEM及TEM中可看到碳管管壁被破壞程度很嚴重,產生許多缺陷,硝酸改質之碳管(H-MWCNT)的形態短小,氫氧化鉀改質之碳管(K-MWCNT)的管壁及末端受損多,經過高溫裂解速率之快慢依序為K-MWCNT > H-MWCNT > A-MWCNT,殘餘量多寡為K-MWCNT > H-MWCNT ≒ A-MWCNT,表示未改質之碳管純度高,改質後不定型碳增多。
由動力吸附實驗結果可發現,在奈米碳管上達吸附平衡時間所需時間為DEP > DMP > HA,且結果均符合擬二階動力吸附模式。等溫吸附實驗中顯示,碳管的比表面積大小及含氧官能基多寡會影響DMP及DEP之吸附量。比較A-MWCNT、H-MWCNT及K-MWCNT對DMP之吸附量依序為0.20、0.14及0.27 mmol/g,在DEP之吸附量為0.23、0.16及0.28 mmol/g,DEP之吸附量皆較DMP高,和分子形狀及疏水性有關,且二種吸附質的吸附曲線均較符合Freundlich模式。在HA存在下之競爭吸附結果,碳管對DMP及DEP的相對吸附量分別下降22.14-41.01 %、30.20-45.41 %,和HA分子佔去碳管大部分之吸附位置,形成空間障礙有關。綜合上述之結果,奈米碳管的吸附能力會隨改質方式而異。
摘要(英) The adsorption DMP, DEP, and HA by MWCNTs with different surface properties were investigated in this study. The influences of the surface area, pore volume, and functional groups of MWCNTs were observed by modification for MWCNTs. After oxidation, the MWCNTs broke into smaller sizes with defects on their surface. From thermogravimetry analysis, it was shown that the percentages of impurity from the largest to the smallest were K-MWCNT > H-MWCNT > A-MWCNT.
The adsorption capacity of DMP, DEP, and HA affected by the molecular shape and hydrophobicity of the molecules as well as the surface area, pore volume, and surface groups of MWCNTs. The adsorption capacity of DEP is larger than that of DMP, because of DEP has larger molecular weight, and logKow value; thus, DEP has higher affinity to the MWCNTs than DMP. The adsorption capacity of A-MWCNT, H-MWCNT, and K-MWCNT were 0.20, 0.14, and 0.27 mmol/g for DMP, respectively, and were 0.23, 0.16, and 0.28 mmol/g for DEP, respectively. With introduction of oxygen-containing surface groups, the hydrophilicity of the MWCNTs increased and steric obstructions were introduced. When humic acid was present, the adsorption of humic acid was favored. Occupation of adsorption sites and steric hindrance resulted in the reducetion of adsorption to 22.14 - 41.01 % for DMP and 30.20 - 45.41 % for DEP. The results suggested that modification of MWCNTs would alter the adsorption behavior.
關鍵字(中) ★ 鄰苯二甲酸酯類
★ 競爭吸附
★ 腐植酸
★ 改質方法
關鍵字(英) ★ competitive adsorption
★ phthalate esters
★ humic acid
★ oxidation
論文目次 圖目錄
表目錄
第一章 前言
1-1 研究緣起
1-2 研究目的
1-3 研究流程
第二章 文獻回顧
2-1 奈米碳管
2-2 吸附理論
2-3 奈米碳管吸附行為之相關研究
2-4 腐植酸及鄰苯二甲酸酯類
第三章 實驗方法
3-1 實驗材料與設備
3-2 實驗方法
第四章 結果與討論
4-1 奈米碳管之定性分析
4-2 吸附平衡之動力吸附模擬
4-3 MWCNTS改質對於PAES吸附能力之影響
4-4 HA與PAES對MWCNTS之競爭吸附
第五章 結論與建議
5-1 結論
5-2 建議
參考文獻
參考文獻 [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56-58 (1991)
[2] S. Iijima, and T. Ichihashi, “Single-shell carbon nanotube of 1-nm diameter”, Nature, 363, 603-605 (1993)
[3] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes - the route toward applications”, Science, 297, 787-792 (2002)
[4] M. Trojanowicz, “Analytical applications of carbon nanotubes:a review”, Trends in Analytical Chemistry, 25, 480-489 (2006)
[5] R. Q. Long, and R. T. Yang, “Carbon nanotubes as superior sorbent for dioxin removal”, Joural American Chemical Society, 123, 2058-2059 (2001)
[6] S. Agnihotri, M. J. Rood, and M. Rostam-Abadi, “Adsorption equilibrium of organic vapors on single-walled carbon nanotubes”, Carbon, 43, 2379-2388 (2005)
[7] X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, and Z. Jia, “Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes”, Chem. Phys. Lett., 376, 154-158 (2003)
[8] C. S. Lu, F. S. Su, and S. K. Hu, “Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions”, Applied Surface Science, 254, 7035-7041 (2008)
[9] Y. H. Li, S. Wang, J. Zhang, X. Wei, C. Xu, Z. Luan, D. Wu, and B. Wei, “Lead adsorption on carbon nanotubes”, Chemical Physics Letters, 357, 263-266 (2002)
[10] Y. H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, and D. Wu, “Adsorption of cadmium(Ⅱ) from aqueous solution by surface oxidized carbon nanotubes”, Carbon, 41, 1057-1062 (2003)
[11] C. J. M. Chin, L. C. Shih, H. J. Tsai, and T. K. Liu, “Adsorption of o-xylene and p-xylene from water by SMWCNTs”, Carbon, 45, 1254-1260 (2007)
[12] 98-99年度毒性化學物質環境流布背景調查計畫,EPA-98-J104-02-205,行政及政策類專案計畫,2009。
[13] 毒性化學物質環境流布調查成果手冊,行政院環境保護署編及,2009。
[14] X. L. Wang, S. Tao, and B. S. Xing, “Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes”, Environmental Science and Technology, 43, 6214-6219 (2009)
[15] B. Shi, X. Zhuang, X. Yan, J. Lu, and H. Tang, “Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes”, Journal of Environmental Science, 22, 1195-1202 (2010)
[16] S. Zhang, T. Shao, S. S. Kaplan Bekaroglu, and T. Karanfil, “Adsorption of synthetic organic chemicals by carbon nanotubes:Effects of backgroup solution chemistry”, Water Research, 44, 2067-2074 (2010)
[17] 陳珮蓉,「利用酸氧化前後奈米碳管吸附鄰苯二甲酸酯類之特性研究」,碩士論文,國立中央大學環境工程研究所,中壢,2010。
[18] 匡元生化科技 CBT Nano-scale Supplier carbon nanotube http://www.cbt.com.tw/0300.html
[19] 曾俊豪,「利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究」,博士論文,國立成功大學化學工程學系,臺南,2009。
[20] 成會明,「奈米碳管」,五南圖書出版社,2004。
[21] F. H. Ko, C. Y. Lee, C. J. Ko, and T. C. Chu, “Purification of Multi-Walled Nanotubes Through Microwave Heating of Nitric Acid in a Closed Vessel”, Carbon, 43, 727-733 (2005 )
[22] A. R. Harutyunyan, B. K. Pradhan, J. Chang, G. Chen, and P. C. Eklund, “Purification of Single-Walled Carbon Nanotubes by Selective Microwavwe Heating of Catalyst Particles”, Carbon, 106, 8671-8675 (2002)
[23] K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, and C. B. Huffman, “Purification of Single-Walled Carbon Nanotubes by Ultrasonically Assisted Filtration”, Chemical Physics Letters, 282, 429-434 (1998)
[24] L. S. K. Pang, J. D. Saxby, and S. P. Chatfield, “Thermogravimetric Analysis of Carbon Nanotubes and Nanoparticles”, Journal of Physical Chemistry, 97, 6941-6942 (1993)
[25] S. C. Tsang, P. J. Harris, and M. L. Green, “Thinning and opening of carbon nanotubes by oxidation using carbon dioxide”, Nature, 362, 520 (1993)
[26] G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, and S. Roth, “Seperation of carbon nanotube by size exclusion chromatograpgy”, Chemical Communication, 3, 435-436 (1998)
[27] B. Pan, and B. S. Xing, “Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes”, Environmental Science and Technology, 42, 9005-9013 (2008)
[28] I. D. Rosca, F. Watari, M. Uo, and T. Akasaka, “Oxidation of mutiwalled carbon nanotubes by nitric acid”, Carbon, 43, 3124-3131 (2005)
[29] A. G. Osorio, I. C. L. Silveira, V. L. Bueno, and C. P. Bergmann, “H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media”, Applied Surface Science, 255, 2485-2489 (2008)
[30] B. Xu, F. Wu, Y. Su, G. Cao, S. Chen, Z. Zhou, and Y. Yang, “Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC:Balance between porosity and conductivity”, Electrochimica Acta, 53, 7730-7735 (2008)
[31] X. L. Xie, Y. W. Mai, and X. P. Zhou, “Dispersion and alignment of carbon nanotubes in polymer matrix:A review”, Materials Science and Engineering, 49, 89-112 (2005)
[32] J. J. Wang, G. P. Yin, J. Zhang, Z. B. Wang, and Y. Z. Gao, “High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell”, Electrochimica Acta, 52, 7042-7050 (2007)
[33] A. M. Shanmugharaj, J. H. Bae, K. Y. Lee, W. H. Noh, S. H. Lee, and S. H. Ryu, “Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites”, Composites Science and Technology, 67, 1813-1822 (2007)
[34] W. Xia, Y. Wang, R. Bergsträßer, S. Kundu, and M. Muhler, “Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption”, Applied Surface Science, 254, 247-250 (2007)
[35] 余翊菱,「以多壁奈米碳管吸附水中雙酚A之特性研究」,碩士論文,國立中央大學環境工程研究所,中壢,2010。
[36] Y. C. Chiang, and P. Y. Wu, “Adsorption equilibrium of sulfur hexafluoride on multi-walled carbon nanotubes”, Journal of Hazardous Materials, 178, 729-738 (2010)
[37] W. M Davis, C. L. Erickson, C. T. Johnston, J. J. Delfino, and J. E. Porter, “Quantitative fourier transform infrared spectroscopic investigation of humic substance functional group composition”, Chemosphere, 38, 2913-2928 (1999)
[38] P. E. Fanning and M. A. Vannice, “A drifts study of the formation of surface group on carbon by oxidation”, Carbon, 31, 721-730 (1993)
[39] 吳錦昆,「氧化鋁吸附地下水中砷之研究」,碩士論文,國立成功大學環境工程學系,臺南,1999。
[40] 邱誌忠,「半導體產業高濃度含身廢水之處理-化學沉降法與活性碳吸附法之評估」,碩士論文,國立中興大學環境工程學系,臺中,2004。
[41] S. Lagergren, “Zur theorie der sogenannten adsorption gelöster stoff”, Kungliga Svenska Vetenskapsakademiens. Handlingar, 24, 1-39 (1898)
[42] Y. S. Ho and G. Mckay, “The kinetics of sorption of divalent metal ions onto sphagnum moss peat”, Water Research, 34, 735-742 (2000)
[43] K. Yang and B. Xing, “Adsorption of compounds by carbon nanomaterials in aqueous phase:polanyi theory and its application”, Chemical Reviews, 110, 5989-6008 (2010)
[44] L. Daohui and B. Xing, “Adsorption of phenolic compounds by carbon nanotubes:role of aromaticity and substitution of hydroxyl groups”, Environmental Science and Technology, 42, 7254-7259 (2008)
[45] F. Su, C. Lu, and S. Hu, “Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes”, Colloids and Surfaces A:Physicochemical and Engineering Aspects, 353, 83-91 (2010)
[46] C. Lu, Y. L. Chung, and K. F. Chang, “Adsorption of trihalomethanes from water with carbon nanotubes”, Water Research, 39, 1183-1189 (2005)
[47] 蔡涵哲,「以單壁奈米碳管吸附芳香族化合物吸附機制之探討」,碩士論文,國立中央大學環境工程研究所,中壢,2007。
[48] 曾國輝,「化學鍵」,建宏出版社,1997。
[49] Samuel D, Faust and Osman M. Aly, Adsorption Processes for Water Treatment, Butterworth, Boston (1987)
[50] F. J. Stevenson, Humus Chemistry, Wiley, New York (1982)
[51] F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, John Wiley & Sons, New York (1994)
[52] G. R. Aiken, D. M. McKnight, and R. L. Wershaw, Humic Substances in Soil, Sediments, and Water, John Wiley and Sons, New York (1985)
[53] 呂鋒洲,腐質酸,自由基與烏腳病,國科會生命科學。
[54] G. Sheng, J. Li, D. Shao, J. Hu, C. Chen, Y. Chen, and X. Wang, “Adsorption of copper(Ⅱ) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acid”, Journal of Hazardous Materials, 178, 333-340 (2010)
[55] K. Yang, W. Wu, Q. Jing, W. Jiang, and B. Xing, “Competitive adsorption of naphthalene with 2,4-dichlorophenol and 4-chloroaniline on multiwalled carbon nanotubes”, Environmental science and technology, 44, 3021-3027 (2010)
[56] B. Pan, and B. Xing, “Competitive and complementary adsorption of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials”, Journal of Agricultural and Food Chemistry, 58, 8338-8343 (2010)
[57] Hazardous Substances Data Bank(HSDB), Last Modified Feb 4 2011
[58] 陳俞燕,「預警原則與鄰苯二甲酸酯類塑化劑之爭議」,碩士論文,淡江大學公共行政學系公共政策碩士班,新北市,2009。
[59] 塑膠產業勞工鄰苯二甲酸酯類暴露評估研究,ISOH97-A308,行政院勞工委員會勞工安全衛生研究所,2009。
[60] X. R. Xu, and X. Y. Li, “Adsorption behavior of dibutyl phthalate on marine sediments”, Marine Pollution Bulletin, 57, 403-408 (2008)
[61] S. V. Mohan, S. Shaiilaja, M. R. Krishna and P. N. Sarma, “Adsorption removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon:A kinetic study”, Journal of Hazardous Materials, 146, 278-282 (2007)
[62] F. Wang, J. Yao, K. Sun and B. Xing, “Adsorption of dialkyl phthalate esters on carbon nanotubes”, Environmental Science and Technology, 44, 6985-6991 (2010)
[63] 「水中總有機碳檢測方法-燃燒 / 紅外線測定法」,環署檢字第67787號公告 NIEA W530.51C。
[64] E. Raymundo-Piñero, P. Azaïs, T. Cacciauerra, D. Cazorla-Amorós, A. Linares-Solano, and F. Béguin, “KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization”, Carbon, 43, 786-795 (2005)
[65] C. J. M. Chin, M. W. Shih, and H. J. Tsai, “Adsorption of nonpolar benzene derivatives on single-walled carbon nanotubes”, Applied Surface Science, 256, 6035-6039 (2010)
[66] C. Pelekani, and V. L. Snoeyink, “Competitive adsorption in natural water:role of activated carbon pore size”, Water Research, 33, 1209-1219 (1999)
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2011-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明