博碩士論文 973306003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:240 、訪客IP:3.16.130.170
姓名 侯柄玄(Ping-Hsuan Hou)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 化學置換法處理印刷電路板氯化銅蝕刻廢液之研究
(Treatment of spent copper chloride etching solution from printed circuit board by Cementation)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 化學置換法是由氯化銅蝕刻廢液中回收金屬銅最經濟有效的技術,反應後之回收液,亦可進一步製成混凝劑。本研究依據實際氯化銅廢液之性質,並以金屬鋁為犧牲金屬,進行批次實驗,再以操作反應溫度變化、銅回收率和反應時間、銅粉純度及回收液品質為評估指標,建立合適之操作方式。
研究發現,以鋁為犧牲金屬之置換反應,在一次添加足量鋁金屬時,初始銅離子濃度越高,回收速率越快,但會造成溫度於反應5分鐘內超過95℃,影響操作上的安全性,尤以初始銅離子濃度大於60g/L以上時,最為顯著。因此,若要避免操作上的危險性,使銅離子完全置換,勢必將足量鋁金屬,採取分批添加的方式。此外本研究發現,增加犧牲金屬鋁劑量(Al/Cu0莫耳比)及縮小鋁片尺寸大小,均有助於提升置換反應速率,但亦增加了旁反應對鋁金屬的消耗率,且旁反應對鋁之消耗量,將高於主反應。
綜合研究評估結果顯示,當初始銅離子濃度(Cu0)分別介於30~50及50~60g/L之間,且鋁總劑量Al/Cu0莫耳比分別為1.0及1.33時,採分批添加方式,經75分鐘反應時間,均可達到99%以上銅回收率,銅粉純度約為95~99%。
摘要(英) Cementation is one of effective and economic techniques for recovery of metal copper from wasted etching liquid containing copper chloride. Also, after solid/liquid separation, the supernatant can be recovered and reused as coagulant. In this study, batch operation of cementation was employed to test the feasibility of copper recovery from real wasted etching liquid using wasted material of aluminum sheet as the sacrificed metal. Several indicators, such as temperature variation, copper recovery rate and reaction time, purity of copper powder, and quality of the recovered supernatant, were used to evaluate the performance of cementation operation.
Experimental results showed that once adding enough amounts of sacrificed metal aluminum, the copper recovery rate increased with the increase of initial copper concentration presented in etching liquid. However, this also resulted in raising temperature over 95℃ at the first 5 min of reaction time and affecting the safety of operation, especially, in the case of copper ion concentration was greater than 60 g/L. In order to avoid the danger of operation, sequencing replenishment of metal aluminum is preferable. This study also found that increase the molar ratio of Al/Cu0 or decrease the sheet size of metal aluminum added could enhance the cementation rate, but the side reaction would consume more aluminum than main reaction did.
Based on the results of overall performance evaluation, when the initial copper concentration (Cu0) was in the range of 30~50 or 50~60 g/L and the total sequencing replenishment of aluminum added at Al/Cu0 molar ratio was 1.0 or 1.3, respectively, over 99% copper was recovered from solution and 95 to 99% purity of copper powder were obtained in 75 minutes of reaction time.
關鍵字(中) ★ 蝕刻廢液
★ 氯化銅
★ 犧牲金屬
★ 化學置換法
★ 鋁
關鍵字(英) ★ cementation
★ aluminum
★ sacrificed metal
★ wasted etching liquid
★ copper chloride
論文目次 摘要 .................................................I
Abstract ............................................II
誌謝 ...............................................III
目錄 ................................................IV
圖目錄 .............................................VII
表目錄 ..............................................XI
第一章前言 .......................................... 1
1-1 研究緣起 ........................................ 1
1-2 研究目的與內容 .................................. 2
第二章文獻回顧 ...................................... 4
2-1 印刷電路板(PCB)業蝕刻廢液水質特性 ............... 4
2-1-1 印刷電路板製造方法與製程概述 .................. 4
2-1-2 印刷電路板蝕刻廢液水質特性 .................... 6
2-2 重金屬蝕刻廢液回收技術 .......................... 9
2-3 化學置換程序應用於氯化銅蝕刻廢液之發展現況 ..... 14
2-3-1 化學置換程序應用於含銅溶液廢液之文獻回顧 ..... 14
2-3-2 國內實廠化學置換應用程序 ..................... 18
2-4 化學置換法原理 ................................. 20
2-4-1 固液相之氧化還原反應 ......................... 20
2-4-2 化學置換法之反應機制 ......................... 20
2-4-3 銅-鋁系統置換反應中可能發生之反應 ............ 22
2-5 影響化學置換反應之因素 ......................... 23
2-5-1 初始濃度 ..................................... 23
2-5-2 犧牲金屬添加方式 ............................. 27
2-5-3 溫度 ......................................... 28
2-5-4 pH 效應 ...................................... 29
2-5-5 攪拌效應 ..................................... 31
第三章實驗設計與方法 ............................... 32
3-1 研究流程 ....................................... 32
3-2 實驗設計 ....................................... 35
3-3 評估指標 ....................................... 39
3-4 實驗裝置與操作方法 ............................. 41
3-4-1 實驗裝置 ..................................... 41
3-4-2 操作方法 ..................................... 42
3-5 實驗儀器、材料及藥品 ........................... 42
3-5-1 實驗儀器 ..................................... 42
3-5-2 實驗材料及藥品 ............................... 44
3-6 分析方法 ....................................... 45
第四章結果與討論 ................................... 47
4-1 氯化銅蝕刻廢液水質特性分析 ..................... 47
4-2 初始銅離子濃度的影響 ........................... 48
4-3 犧牲金屬劑量的影響 ............................. 56
4-4 攪拌速度效應 ................................... 63
4-5 犠牲金屬在相同添加量時之單片大小的影響 ......... 66
4-6 犠牲金屬不同添加方式之影響 ..................... 77
4-7 綜合評估 ....................................... 85
第五章結論與建議 ................................... 96
5-1 結論 ........................................... 96
5-2 建議 ........................................... 98
參考文.............................................. 99
附錄A 置換反應過程及資源化產品之照片 .............. 103
附錄B 實驗原始數據 ................................ 110
參考文獻 1.Anacleto, A. L. and J. R. Carvaiho, “Mercury Cementation from Chloride Solutions Using Iron, Zinc and Aluminium,” Minerals Engineering, Vol.9, No.4, pp.385-379(1996).
2.Chen, H. J. and C. P. Lee, “Effects of the Type of Chelating Agent and Deposit Morphology on the Kinetics of the Copper-Aluminum Cementation System,”Langmuir, Vol.10, No.10, pp.3880-3886(1994).
3.Das, S. C. and P. Gopala Krishna, “Effects of Fe(Ⅲ) during Copper Electrowinning at Higher Current Density,” International Journal of Mineral Processing, Vol.46, No. 1~2, pp.91-105(1996).
4.Demirkıran, N., A. Ekmekyapar, A. Künkül, A. Baysar’ “A kinetic study of copper cementation with zinc in aqueous solutions,” International Journal of Mineral
Processing, Volume 82, No. 2, PP 80-85 (2007)
5.Dib, A. and L. Makhloufi “Cementation treatment of copper in wastewater: mass transfer in a fixed bed of iron spheres,” Chemical Engineering and Processing, Vol. 43, No. 10, pp 1265-1273 (2004)
6.Djokic, S. S., “Cementation of Copper on Aluminum in Alkaline-Solutions, ” Journal of the Electrochemical Society, Vol.143, No.4, pp.1300-1305(1996).
7.Donmez, B., F. Sevim, and H. Sarac, “A Kinetic Study of the Cementation of Copper from Sulphate Solutions onto a Rotating Aluminum Disc,” Hydrometallurgy, Vol.53, No.4, pp.145-154(1999).
8.Dreher, T. M., A. Nelson, G. P. Demopoulos, and D. Filippou,“The Kinetics of Cobalt Removal by cementation from an Industrial Zinc Electrolyte in the Presence of Cu, Cd, Pb, Sb and Sn Additive,” Hydrometallurgy, Vol.60,No.2,
pp.105-116(2001).
9.Farahmand,F., D. Moradkhani, M. S. Safarzadeh, and F. Rashchi “Optimization and kinetics of the cementation of lead with aluminum powder,” Hydrometallurgy, Vol. 98, No. 1-2, pp 81-85 (2009)
10.Karavasteva, M., “Kinetics and deposit morphology of copper cementation onto zinc, iron and aluminium,” Hydrometallurgy, Vol. 76, No. 1-2, pp 149-152 (2005)
11.Ku, Y. and C. H. Chen,“Removal of Chelated Copper from Waste-waters by Iron Cementation,”Ind. & Engr. Chem. Res., Vol.31, No.4, pp.1111-1115(1992).
12.Ku, Y. and C.H. Chen, Kinetic-Study of Copper Deposition on Iron by Cementation Reaction,”Separation Science and Technology, Vol.27, No.10, pp.1259-1275(1992).
13.Lu, G., J. Qu, and H. Tang, “The Electrochemical Production of Highly Effective Polyaluminum Chloride,” Water Research, Vol.33, No3, pp.807-813(1999)..
14.Mackinnon, D. J. and T. R. Ingraham,“Copper Cementation on Aluminum Canning Sheet,”Candian Metallungical Quarterly, Vol. 10, No 3, pp.197~203(2000).
15.Mahmoud, A. Z., “Effect of Surface-Active Substances on the Rate of Production of Copper-Powder from Copper-Sulfate Solutions by Cementation on Zinc Rods in Gas Sparged Reactors,”Hydrometallurgy, Vol. 41, No 2-3, pp.231-242(1996).
16.Makhloufi, L., B. Saidani, and H. Hammache, “Removal of Lead Ions From Acidic Aqueous Solutions by Cementation on Iron,” Water Research, Vol. 34, No 9, pp.2517-2524(2000).
17.Nosier, S. A. and S. A. Sallam, “Removal of lead ions from wastewater by cementation on a gas-sparged zinc cylinder,” Separation and Purification Technology, Vol.18, No 2, pp.93-101(2000).
18.Nguyen, H. H., T. Tran, and P. L. M. Wong, “A Kinetic Study of the Cementation of Gold from Cyanide Solutions onto Copper,” Hydrometallurgy, Vol.46, No1-2, pp.55-69(1997).
19.Panda, B. and S. C. M. Das, “Electrowinning of Copper from Sulfate Electrolyte in Presence of Sulfurous Acid,” Hydrometallurgy, Vol.59, pp.55-67(2001).
20.Patterson, J.W. and W. A. Jancuk,“Cementation Treatment of Copper in Wastewater,”Proc. Ind. Waste Conf., Vol.32, pp853~865(1977).
21.Puvvada, G. and T. Tran, “The Cementation of Ag(I) Ions from Sodium-Chloride Solutions Onto a Rotating Copper Disc,” Hydrometallurgy, Vol. 37, No. 2, pp.193-206(1995).
22.Shen, Y. H. and B. A. Dempsey,“Synthesis and Speciation of Polyaluminum Chloride for Water Treatment,” Environment Intemation, Vol. 24, No.8, pp.899-910(1998).
23.Stefanowicz, T., M. Osinska, and S. Napieralskazagozda, “Copper Recovery by Cementation Method,” Hydrometallurgy, Vol. 47, No.1, pp.69-90(1997).
24.Wang, Z., D. Chen, and L. Chen,”Application of fluoride to enhance aluminum cementation of gold from acidic thiocyanate solution,” Hydrometallurgy, Vol. 89,
No. 3-4, pp196-206(2007).
25.“WECC Global PCB Production Report For 2008”, WECC, July 2009.
http://www.hkpca.org/PublishWebSite/hkpca2/gallery/a7d5b937-6696-4ccb-8b49-44cbcd142df8.pdf
26.李嘉菘、顧洋,「陰離子對鐵金屬置換廢水中銅離子反應之影響」,第十七屆廢水處理技術研討會論文集,中壢,第673-688 頁(1992)。
27.吳明晃,「以化學置換程序處理水溶液中含鎘、汞離子之研究」,碩士論文,台灣科技大學化學工程系,台北(2000)。
28.周珊珊、廖啟鐘、彭淑惠,「重金屬廢液回收處理技術」,工業污染防治,第二十卷,第四期,第166~186 頁,民國90 年。
29.許添順,「化學置換程序回收氯化銅蝕刻廢液之研究」,碩士論文,中央大學環境工程學系,桃園(2002)。
30.楊漢明、黃國瑞、李勝男、柯貴城,「鋁金屬處理高濃度含銅廢液之探討」,第十九屆廢水處理技術研討會論文集,台南,第761-799 頁(1994)。
31.經濟部工業局,「印刷電路板業環保工安整合性技術手冊」,2000年9月。
32.經濟部工業局,「廢棄物資源化技術資訊手冊」,2003年12月。
33.經濟部工業局,「印刷電路板業資源化應用技術手冊」,2009年6月。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明