博碩士論文 983206008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.142.133.234
姓名 謝育甄(Yu-Chen Hsieh)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 多孔性吸附介質之表面改質及其對有害重金屬吸附之研究
(Surface modification of porous materials and application for the adsorption of heavy metal)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究有鑑於多孔性吸附介質孔洞大小分佈不均、比表面積不夠高,且對特定金屬無選擇性之因素。本研究透過不同改質方法,於不同水熱合成條件合成之多孔性介質表面以不同改質劑進行改質,藉此探討多孔性介質之孔洞大小、比表面積變化、表面結構之差異、官能基之鍵結量多寡與使用不同改質劑對不同重金屬 (Cu2+、Zn2+、Ag+) 選擇性吸附效果之影響。以達到找尋擁有對特定重金屬吸附能力良好之吸附介質,解決對環境有害之重金屬汙染問題。
  本研究將改質前後多孔性吸附介質分別進行 ASAP、FTIR、XRD、SEM 及 EA 分析,探討不同改質參數對吸附介質特性之影響。由研究成果得知改質後 C9-106 吸附重金屬能力較改質後 C16佳。C9-106 與 C16 鍵結含有三個胺基之官能基後,吸附 Cu2+、Zn2+ 及 Ag+ 效果較鍵結氰基者佳。另外,以含三個胺基官能基及含CN官能基之改質劑改質後之 C9-106 與 C16 分別對此三種金屬之親和力:Ag+>Cu2+>Zn2+。
摘要(英) Two mesoporous materials, C16 and C9-106, was modified with N1-(3-Trimethoxysilylpropyl) diethylenetriamine (-3N), 3-Cyanopropyltriethoxysilane (-CN), and 3-Aminopropyltriethoxysilane (-1N). Finally, the removal of heavy metal (Cu2+, Zn2+ and Ag+) using modified mesoporous was investigated.
The aim of the study was to discuss about pore size, surface area, structure of surface, amount of functional group and selectivity of heavy metal.
The mesoporous materials are characterized by ASAP, FTIR, XRD, SEM and EA. Through the adsorption experimental results, we found that the adsorption capacity of modified C9-106 is higher than that of C16. Moreover, among the modification processes to remove Cu2+, Zn2+ and Ag+, the ability of the modified C9-106 by 3N functional silanes was better than that of others. On the other hand, the modified C16 and C9-106 by 3N and CN functional silanes removed the target heavy metal ions in the selectivity order of Ag+ > Cu2+ > Zn2+.
關鍵字(中) ★ 選擇性
★ 吸附
★ 多孔性吸附介質
★ 改質
★ 重金屬
關鍵字(英) ★ adsorption
★ mesoporous materials
★ modify
★ heavy mental
★ selectivity
論文目次 目 錄 I
圖目錄 IV
表目錄 IX
第一章 緒 論 1
1-1 研究緣起 1
1-2 研究目的與內容 3
第二章 文獻回顧 4
2-1 多孔性吸附介質發展 4
2-2 多孔性吸附介質特性 5
2-2-1 合成多孔性吸附介質之途徑及方法 5
2-2-2 合成多孔性吸附介質之形成機制 8
2-2-3 多孔性吸附介質之表面改質 9
2-3 表面改質後之多孔性吸附介質的應用 14
2-4 重金屬汙染 16
2-4-1 重金屬來源與危害 16
2-4-2 去除重金屬之方法 18
2-5 吸附理論 19
2-5-1 氣態等溫吸附線 22
2-5-2 等溫吸附模式 24
第三章 研究方法 28
3-1 研究內容與流程 28
3-2 實驗材料 31
3-3 實驗設備與儀器 32
3-3-1 實驗設備 32
3-3-2 實驗儀器 34
3-4 多孔性吸附介質合成實驗 41
3-5 多孔性吸附介質改質實驗 42
3-4-1 改質方法 A 43
3-4-2 改質方法 B 44
3-6 表面改質覆蓋率計算 46
3-7 重金屬吸附實驗 47
第四章 結果與討論 49
4-1 改質多孔性吸附介質之基本物化特性鑑定 49
4-1-1 以改質方法 A 改質後吸附介質之基本特性 49
4-1-2 以改質方法 B 改質後吸附介質之基本特性 70
4-2 重金屬吸附實驗 81
4-2-1 Cu2+ 之等溫吸附模式 81
4-2-2 Zn2+ 之等溫吸附模式 85
4-2-3 Ag+ 之等溫吸附模式 88
4-2-4 改質後鍵結氰基吸附劑之等溫吸附模式 95
4-2-5 改質後鍵結三個胺基吸附劑之等溫吸附模式 97
4-2-6 兩種改質方法之比較 99
第五章 結論與建議 101
5-1 結論 101
5-2 建議 103
參考文獻 104
參考文獻 Ahrland, S., Chatt, J. and Davies, N. R., “The Relative Affinities of Ligand Atoms for Acceptor Molecules and Ions.” Chem. Soc. Review, 12, 265-276 (1958).
Algarra, M., Jimenez, M. V., Enrique, R. C., Antonio, J. L. and Jose, J. J., “Heavy Metals Removal from Electroplating Wastewater by Aminopropyl-Si MCM-41.”, Chemosphere, 59, 779-786 (2005).
Antonelli, D. M. and Ying, J. Y., “Synthesis and Characterization of Hexagonally Packed Mesoporous Tantalum Oxide Molecular Sieves.”, Chemistry of Materials, 8, (4), 874-881 (1996).
Antonelli, D. M. and Ying, J. Y., “Synthesis of A Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through A Novel Ligand-assisted Templating Mechanism.”, Angewandte Chemie-International Edition in English, 35, (4), 426-430 (1996).
Antonelli, D. M., Nakahira, A. and Ying, J. Y., “Ligand-assisted Liquid Crystal Templating in Mesoporous Niobium Oxide Molecular Sieves.”, Inorganic Chemistry, 35, (11), 3126-3136 (1996).
Bagshaw, S. A., Prouzet, E. and Pinnavaia, T. J., “Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants.”, Science, 269, (5228), 1242-1244 (1995).
Blitz, I. P., Blitz, J. P., Gun’ko, V. M. and Sheeran, D. J., “Functionalized silicas: Structural Characteristics and Adsorption of Cu(II) and Pb(II).”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 307, 83-92 (2007).
Chong, A. S. Maria. and Zhao, X. S., “Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials.”, J. Phys. Chem. B, 107, 12650-12657 (2003).
Colthup, N., “Spectra-Structure Correlations in the Infra-Red Region.” J. Opt. Soc. Am., 40, 397-400 (1950).
Corma, A., “From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis.”, Chemical Reviews, 97, (6), 2373-2419 (1997).
Coronas J., “Present and Future Synthesis Challenges for Zeolite.”, Chemical Engineering Journal, 156, 236–242 (2010).
Davis, M. E., Chen, C. Y., Burkett, S. L. and Li, H. X., “Studies on Mesoporous Materials: I. Synthesis and Characterization of MCM-41”, Microporous Materials.”, 2, 17-26 (1993).
Feng, X., Fryxell, G. E., Wang, L. Q., Kim, A. Y., Liu, J. and Kemner, K. M., “Functionalized Monolayers on Ordered Mesoporous Supports.”, Science, 276, 923-925 (1997).
Fowler, C. E., Burkett, S. L. and Mann, S., “Synthesis and Characterization of Ordered organo–silica–surfactant Mesophases with Functionalized MCM-41-type Architecture.”, Chem. Commun., 1769-1770 (1997).
Gao, W. and Reven, L., “Solid-State NMR Studies of Self-Assembled Monolayers. ”, Langmuir, 11,1860- 1863 (1995).
Glen, E. F., Jun, Liu. T., Hauser, A., Zimin, N., Kim, F. F., Shas, M., Meiling, G. and Richard, T. H., “Design and Synthesis of Selective Mesoporous Anion Traps.”, Chemistry of Materials, 11, (8), 2148- 2154 (1999).
Gregg, S. J. and Sing , K. S. W., “Adsorption, Surface Area and Porosity. ”, Academic Press Inc., London (1982).
Hamoudi, S., El-nemr, A. and Belkacemi, K., “Adsorptive Removal of Dihydrogenphosphate Ion from Aqueous Solutions Using Mono, Di- and Tri-ammonium-functionalized SBA-15.”, Journal of Colloid and Interface Science, 343,615-621 (2009).
Hanzel, R. and Rajec, P., “Sorption of Cobalt on Modified Silica Gel Materials.”, Journal of Radioanalytical and Nuclear Chemistry, 246, 607-615 (2000).
Heidari, A., Younesi, H. and Mehraban, Z., “Removal of Ni (II), Cd (II), and Pb (II) from A Ternary Aqueous Solution by Amino Functionalized Mesoporous and Nano Mesoporous Silica.”, Chemical Engineering Journal, 153, 70-79 (2009).
Huo, Q. S., Leon, R., Petroff, P. M. and Stucky, G. D., “Mesostructure Design with Gemini Surfactants - Supercage Formation in a 3-Dimensional Hexagonal Array.”, Science, 268, (5215), 1324-1327 (1995).
Huo, Q. S., Margolese, D. I., Ciesla, U., Feng, P. Y., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schuth, F. and Stucky, G. D., “Generalized Synthesis of Periodic Surfactant Inorganic Composite-Materials.”, Nature, 368, (6469), 317-321 (1994).
IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, “Colloid and Surface Chemistry.”, Pure Appl. Chem., 31, 578 (1972).
Kawi, S. and Shen, S. C., “Effects of Structural and Non-structural Al Species on the Stability of MCM-41 Materials in Boiling Water.”, Materials Letter, 42, 108-112 (2000).
Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., “Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism. ”, Nature, 359, 710-712 (1992).
Li, J., Miao, X., Hao, Y., Zhao, J., Sun, X. and Wang, L., “Synthesis, Amino-functionalization of Mesoporous Silica and Its Adsorption of Cr(Ⅵ).”, Journal of Colloid and Interface Science, 318, 309-314 (2008).
Liang, X., Xu, Y. G., Sun, G., Wang, L., Sun, Y. and Qin, X., “Preparation, Characterization of Thiol-functionalized Silica and Application for Sorption of Pb2+ and Cd2+.”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 349, 61-68 (2009).
Lim, M. H. and Stein, A., “Comparative Studies of Grafting and Direct Syntheses of Inorganic-Organic Hybrid Mesoporous Materials.”, Chem. Mater., 11, 3285-3295 (1999).
Lim, M. H. and Stein, A., “Comparative Studies of Grafting and Direct Syntheses of Inorganic−Organic Hybrid Mesoporous Materials.”, Chem. Mater., 11, 3285-3295 (1999).
Liu, J., Feng, X., Fryxell, G. E., Wang, L. Q., Kim. A. Y. and Gong, M. L., “Hybrid Mesoporous Materials with Functionalized Monolayers.”, Adv. Mater., 10, 161-165 (1998).
Llewellyn, P. L., Grillet, Y. and Rouquerol, J., “Effect of T(Iii) Zoning in Mfi-Type Zeolites on the Adsorption-Isotherm and Differential Enthalpies of Adsorption at 77-K.”, Langmuir, 10, (2), 570-575 (1994).
Llewellyn, P. L., Pellenq, N., Grillet, Y., Rouquerol, F. and Rouquerol, J., “Quasi-Equilibrium Adsorption Gravimetry of Water on Mfi-Type and Fer-Type Zeolites and on an Afi-Type Aluminophosphate.”, Journal of Thermal Analysis , 42, (5), 855-867 (1994).
Matijasic, A., Voegtlin, A. C., Patarin, J., Guth, J. L. and Huve, L., “Room-temperature Synthesis of Silicate Mesoporous Materials. An in Situ Study of the Lamellar to Hexagonal Phase Transition.”, Chem. Commun., 10, 1123-1124 (1996).
McBain, J. W., “The Sorption of Gases and Vapours by Solid.”, Rutledge and Sons, London, Ch 5 (1932).
Mohan, D. and Pittman, C. U., “Activated Carbons and Low Cost Adsorbents for Remediation of Tri- and Hexavalent Chromium from Water.”, J. Hazard. Mater., 137, (2), 762-811 (2006).
Monnier, A., “Cooperation Formation of Inorganic Organic Interfaces in the Synthesis of Silicate Mesostructure.”, Science, 261, 1299-1303 (1993).
Murray, B. M., “Environmental Chemistry of Soils.”, Oxford University Press, New York (1994).
Noroozifar, M., Khorasani-Motlagh, M., Gorgij, M. N. and Naderpour, H. R., “Adsorption Behavior of Cr (VI) on Modified Natural Zeolite by A New Bolaform N,N,N,N,N,N-hexamethyl-1,9-nonanediammonium Dibromide Reagent.”, J. Hazard. Mater. , 155, 566-571 (2008).
Pearson, G. R., “Hard and Softs Acids and Bases.”, J. Am. Chem. Soc., 85, 3533-3539 (1963).
Pereira1, A. S., Ferreira1, G., Caetano1, L., Castro, R. S. D., Santos, A., Padilha, P. M. and Castro1, G. R., “4-amine-2-mercaptopyrimidine Modified Silica Gel Applied in Cd (II) and Pb (II) Extraction from An Aqueous Medium.”, Polish Journal of Chemical Technology, 12, 1,7-11 (2010).
Qin, Q., Ma, J. and Liu, K., “Adsorption of Anionic Dyes on Ammonium-functionalized MCM-41.”, J. Hazard. Mater. , 162, 133-139 (2009).
Saad, R., Hamoudi, S. and Belkacemi, K., “Adsorption of Phosphate and Nitrate Anions on Ammonium-functionnalized Mesoporous Silicas.”, J. porous Mater, 15, 315-323 (2008).
Selvam, P., Bhatia, S. K.and Sonwane, C. G., “Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves.”, Industrial & Engineering Chemistry Research, 40, (15), 3237-3261 (2001).
Štandeker, S., Veronovski, A., Novak, Z. and Knez, Ž., “Silica Aerogels Modified with Mercapto Functional Groups Used for Cu (II) and Hg (II) Removal from Aqueous Solutions.”, Desalination, 269, 223-230 (2011).
Steel, A., Carr, S. W. and Anderson, M. W., “N-14 NMR-Study of Surfactant Mesophases in the Synthesis of Mesoporous Silicates.”, Journal of the Chemical Society-Chemical Communications, 13, 1571-1572 (1994).
Stein, A., Melde, B. J. and Schroden, R. C., “Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age.”, Adv. Mater., 12, 1403-1419 (2000).
Sun, T. and Ying, J. Y., “Synthesis of Microporous Transition Metal Oxide Molecular Sieves with Bifunctional Templating Molecules.”, Angewandte Chemie-International Edition, 37, (5), 664-667 (1998).
Tanev, P. T. and Pinnavaia, T. J., “A Neutral Templating Route to Mesoporous Molecular-Sieves.”, Science, 267, (5199), 865-867 (1995).
Rhijn, V., W. M., De Vos, D. E., Sels, B. F., Bossaert, W. D. and Jacobs, P. A., “Sulfonic Acid Functionalised Ordered Mesoporous Materials as Catalysts for Condensation and Esterification Reactions.”, Chem. Commun, (3), 317-318 (1998).
Wang, G., Amy, N. O., Elizabeth, A. B., Kelley, D., Tao, Z. and Tewodros, A., “Functionalized Mesoporous Materials for Adsorption and Release of Different Drug Molecules: A Comparative Study.”, Journal of Solid State Chemistry, 182, 1649-1660 (2009).
Wingenfelder, U., Nowack, B., Furrer, G. and Schuli, R., “Adsorption of Pb and Cd by Amine-modified Zeolite.”, Water Research, 39, 3287-3297 (2005).
Zepeda, T.A., Pawelec, B., Fierro, J. L. G., Montesinos, A., Olivas, A., Fuentes, S. and Halachev, T., “Synthesis and Characterization of P-modified Mesoporous CoMo/HMS–Ti Catalysts.”, Microporous and Mesoporous Materials, 111, 493-506 (2008).
Zhang, J., Ma, Z., Jiao, J., Yin, H., Yan, W., Hagaman, E. W., Yu, J. and Dai, S., “Surface Functionalization of Mesoporous Silica SBA-15 by Liquid-phase Grafting of Zirconium Phosphate.”, Microporous and Mesoporous Materials, 129, 200-209 (2010).
Zhang, L., Yu, C., Zhao, W., Hua, Z., Chen, H., Li, L. and Shi J., “Preparation of Multi-amine-grafted Mesoporous Silicas and Their Application to Heavy Metal Ions Adsorption.”, Joural of Non-Crystalline Solids, 353, 4055-4061 (2007).
Zhao, X. S., Lu, G. Q. and Millar, G. J., “Advances in Mesoporous Molecular Sieve MCM-41.”, Ind. Eng. Chem. Res., 35, 2075-2090 (1996).
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明