博碩士論文 973206019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:52.15.136.179
姓名 鄭瑞仁(Rui-ren Cheng)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 大氣氣膠消光係數修正對都市氣膠光學尺度影響
(The effect of aerosol light-extinction coefficient correction on urban aerosol scale height)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大氣氣膠對太陽輻射的消光作用造成大氣冷卻和加溫,是影響地球環境變遷的重要污染物。氣膠消光係數是由散光係數和吸光係數所構成,因此,要準確評估大氣氣膠對太陽輻射光學效應必須仰賴正確的氣膠消光係數。本文以新莊微粒超級測站量測的氣膠消光係數來評估台北都會區氣膠光學特性,由於新莊微粒超級測站量測的氣膠消光係數沒有修正氣膠散光儀的光源照射積分角度,也沒有修正氣膠吸光儀的濾紙纖維多重散射及沉積在濾紙微粒的消光效應,因此,本文參考Anderson and Ogren (1998)和Colluad Coen et al. (2010)論文分別修正量測的氣膠散光和吸光係數。
研究結果顯示,修正後氣膠散光係數較修正前高15%,修正後氣膠吸光係數較修正前低8%,修正後氣膠消光係數較修正前高13%,直接受到影響的是單次散射反照率的增加,修正後單次散射反照率較修正前高3%。本文以修正後氣膠消光係數推估大氣氣膠光學尺度(scale height),修正後也較修正前低約13%,顯示垂直空氣柱氣膠分布的實際高度較修正前低。
本文篩選中研院設置於台灣大學的光達有效數據, 比較2008~2009年間量測氣膠消光係數的垂直剖面變化,發現光學尺度呈現不同的季節變化與日變化,在春季時會有較高的光學尺度,主要是春季容易受大陸沙塵傳輸影響。最後,本文篩選沙塵時期、節慶日、PM2.5高濃度事件日與平常日,探討氣膠消光係數與光學尺度的變化。
摘要(英) It’’s important pollutants that affect the global environmental changes caused by atmospheric aerosol extinction of solar radiation can cooling and warming the atmospheric. The light extinction coefficient is the sum of the light scattering and light absorption coefficients, therefore, it’’s the correct atmospheric light extinction coefficient is needed for evaluation of aerosol effects on solar radiation. To assess the aerosol optical properties in Taipei metropolitan area, the aerosol extinction coefficient have been observed at Hsin-Chuang supersite station in Taipei, cause of the observed data didn’’t corrected for the truncation error and for the non-idealities in angular intensity distribution of the light and didn’’t took explicitly into account the fact that the filter-loading correction, the multiple scattering correction and the scattering correction. Therefore, the corrected methods are according to Anderson and Ogren (1998) and Colluad Coen et al. (2010).
The study investigates the real aerosol scattering coefficient is higher than original value 15%, the real absorption coefficient is lower than original values 8% and the real extinction coefficient is higher than original value 13%, it directly affected is increase of single scattering albedo,(SSA), the real SSA is higher than original value 3%,meanwhile,the scale height is determined by aerosol extinction coefficient and aerosol optical depth, the real height is lower than 13%it represents the aerosol distribution height in vertical is lower than original height.
This paper use LIDAR to measured the vertically resolved of extinction is co-owned by the Research Center for Environmental Change, Academia Sinica and the Department of Atmospheric Science, National Taiwan University in 2008~2009.The result found scale height have strong seasonal cycle and daily cycle, it’’s higher in spring, shows there are often Asian dust storms events during spring. This paper, now, investigate the change of aerosol extinction coefficient and scale height in dust storms events, festivals, PM2.5 high concentration events and normal days, respectively.
關鍵字(中) ★ 氣膠消光係數修正
★ 光學尺度
★ 氣膠消光係數
關鍵字(英) ★ the corrected aerosol extinction coefficient
★ scale height
★ aerosol extinction coefficient
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1氣膠散光係數修正 3
2.2氣膠吸光係數修正 6
2.2.1 The Weingartner correction 9
2.2.2 The Arnott correction 10
2.2.3 The Schmid correction 13
2.2.4 Virkkula filter loading correction 14
2.2.5 The new correction 15
2.3氣膠垂直光學特性 17
2.3.1氣膠光學厚度與Angstrom exponent 17
2.3.2 光學尺度 21
表2.5 平均光學尺度 22
第三章 研究方法 23
3.1 研究架構及流程 23
3.2 測站位置、時間及周圍介紹 25
3.3 氣膠監測與採樣儀器 27
3.3.1 連續自動監測儀器 27
3.3.2 連續自動監測儀器數據處理 29
3.3.3 微粒質量濃度R&P 1400a 31
3.4 光學監測與分析儀器 32
3.4.1 微粒吸光儀 32
3.4.2 積分式散光儀 33
3.4.3 太陽輻射儀 34
3.4.4 光達 36
3.5 數據分析方法 38
3.5.1 氣膠散光係數修正 38
3.5.2 氣膠吸光係數修正 29
第四章 結果與討論 45
4.1 氣膠消光係數修正 45
4.1.1 氣膠吸光係數修正 46
4.1.2 濾紙沉積微粒吸光影響 53
4.1.3 散射修正常數 55
4.1.4 多重散射修正常數 58
4.2 氣膠消光係數修正前後差異 60
4.3 氣膠消光係數垂直剖面變化 68
4.3.1 水平氣膠消光係數 68
4.3.2 混合層與光學尺度變化 70
4.4 個案分析 77
4.4.1 沙塵時期 77
4.4.2 節慶日 81
4.4.3 高濃度事件 85
4.4.4 一般日 92
第五章 結論與建議 99
5.1 結論 99
5.2 建議 100
第六章 參考文獻 101
附錄一 口試委員意見回覆 109
附錄二 氣膠吸光係數修正式 優、缺點比較 115
參考文獻 Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R., Quant, F., Sem, G., Wicdensohler, A., Ahlquist, N. A., Bates, T. S., 1996. Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer, J. Atmos. Oceanic Technol., 13, 967-986.
Anderson, T. L., Ogren, J. A., 1998. Determining aerosol radiative properties using the TSI 3563 integrating nephelometer, Aerosol Sci. Technol., 29, 57–69.
Arnott, W. P., Hamasha, K., Moosmuller, H., Sheridan, P. J., Ogren, J. A., 2005. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer, Aerosol Sci. Technol., 39, 17–29.
Babu, S. S., Sreekanth, V., Nair, V. S., Satheesh, S. K., Moorthy, K. K., 2010. Vertical profile of aerosol single scattering albedo over west coast of India during W_ICARB, J. Atmos. Solar Terr. Phys., 72, 876–882.
Bond, T. C., Covert, D. S., Muller, T., 2009. Truncation and angular-scattering corrections for absorbing aerosol in the TSI 3563 nephelometer, Aerosol Sci. Technol., 43, 866–871.
Bond, T. C., Anderson, T. L., Campbell, D., 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols, J. Aerosol Sci., 30, 582–600.
Charlock, T. P. and Sellers, W. D., 1980. Aerosol Effects on Climate: Calculations with Time-Dependent and Steady-State Radiative-Convective Models. Journal of the Atmospheric Sciences 37, 1327-1341.
Chen, Y. W., Hazra, A., Chen, W. N., Lin, M. L., Lin, P. H., Chou, C. C. K., Chen, J. P., 2006. Application of Lidar in the Observation of Atmospheric Particulate Pollutants in Taipei, Proceedings of the SPIE., Volume 6299, pp. 62990E.
Chow, J. C., Watson, J. G., Doraiswamy, P., Chen, L.W-A., Sodeman, D. A., Lowenthal, D. H., Park, K., Arnott, W. P., Motallebi, N., 2009. Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California, Atmos. Res., 93, 874–887.
Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H., Henzing, J. S., Jennings, S. G., Moerman, M., Petzold, A., Schmid, O. Baltensperger, U., 2010. Minimizing light absorption measurement artifacts of the aethalometer: Evaluation of five correction algorithms, Atmos. Meas. Tech., 3, 457–474.
Du, W., Xin, J., Wang, M., Gao, Q., Li, Z., Wang, Y., 2008. Photometric measurements of spring aerosol optical properties in dust and non-dust periods in China, Atmos. Environ., 42, 7981–7987.
Eck, T. F., Holben, B. N., Dubovik, O., Smirnov, A., Goloub, P., Chen, H. B., Chatenet, B., Gomes, L., Zhang, X. Y., Tsay, S. C., Ji, Q., Giles, D., Slutsker, I., 2005. Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J. Geophys. Res., 110, D06202, doi:10.1029/2004JD005274.
Favez, O., Alfaro, S. C., Sciare, J., Cachier, H., Abdelwahab, M. M., 2009. Ambient measurements of light-absorption by agricultural waste burning organic aerosols, J. Aerosol Sci., 40, 613–620.
Gerasopoulos, E., Andreae, M. O., Zerefos, C. S., Andreae, T. W., Balis1, D., Formenti, P., Merlet, P., Amiridis, V., Papastefanou, C., 2003. Climatological aspects of aerosol optical properties in Northern Greece, Atmos. Chem. Phys., 3, 2025–2041.
Hansen, A. D. A., Rosen, H., Novakov, T., 1984. The aethalometer—An instrument for the real-time measurement of optical absorption by aerosol particles, Sci. Total Environ., 36, 191–196.
Heintzenberg, J., 1978. The angular calibration of the total scatter/backscatter nephelometer, consequences and applications. Staub-Reinhaltl. Luft, 38, 62–63.
Heintzenberg, J., Charlson, R. J., 1996. The integrating nephelometer: A Review, J. Atmos. Oceanic Technol., 13, 987-1000.
Jung, J., Lee, H., Kim, Y. J., Liu, X., Zhang, Y., Gu, J., Fan, S., 2009. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign, J. Environ Manage., 90, 3231–3244.
Leon, J. F., Derimian, Y., Chiapello, I., Tanr’e, D., Podvin, T. Chatenet, B. Diallo, A. Deroo, C., 2009. Aerosol vertical distribution and optical properties over M’Bour (16.96W; 14.39N), Senegal from 2006 to 2008, Atmos. Chem. Phys., 9, 9249–9261.
Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., Cahill, T. A. 1994.Spatial and Seasonal Trends in Particle Concentration and Optical Extinction in the United States, J. Geophys. Res., 99, 1347–1370.
Moosmuller, H., Chakrabarty, R. K., Arnott, W. P., 2009. Aerosol light absorption and its measurement : A review, J. Quant. Spectrosc. RA., 110, 844–878.
Nikolay, K., Grigorov, I., Kolev, I., Devara, P. C. S., Raj, P. E., Dani, K. K., 2007. Lidar and Sun photometer observations of atmospheric boundary-layer characteristics over an urban area in a mountain valley, Boundary-Layer Meteorol., 124, 99–115.
Ogunjobi, K. O., He, Z., Kim, K. W., Kim, Y. J., 2004. Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea, Atmos. Environ., 38, 1313–1323.
Park, S. S., Hansen, A. D. A., Cho, S. Y., 2010. Measurement of real time black carbon for investigating spot loading effects of aethalometer data, Atmos. Environ., 44, 1449–1455.
Perez, C., Nickovic, S., Baldasano, J. M., Sicard, M., Rocadenbosch, F., Cachorro, V. E., 2006. A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling, J. Geophys. Res., 111, D15214, doi:10.1029/2005JD006579.
Qiu, J., Zong, X., Zhang, X., 2005. A study of the scaling height of the tropospheric aerosol and its extinction coefficient profile, J. Aerosol Sci., 34, 1445–1463.
Raut, J. C., Chazette, P., 2007. Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment, Atmos. Chem. Phys., 7, 2797–2815.
Sasano, Y., 1996. Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993, Appl. Opt., 35(24), 4941, doi:10.1364/AO.35.004941.
Schmid, O., Artaxo, P., Arnott,W. P., Chand, D., Gatti, L. V., Frank, G. P., Hoffer, A., Schnaiter, M., Andreae, M. O., 2006. Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques, Atmos. Chem. Phys., 6, 3443–3462.
Tsai, T. C., Jeng, Y. J., Chu, D. A., Chen, J. P., Chang, S. C., 2009. Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008, Atmos. Environ., doi:10.1016 /j.atmosenv. 2009.10.006
Virkkula, A., Ahlquist, N. C., Covert, D. S., Arnott, W. P., Sheridan, P. J., Quinn, P. K., Coffman, D. J.. 2005. Modification, calibration and a field test of an instrument for measuring light absorption by particles, Aerosol Sci. Technol., 39, 68–83.
Virkkula, A., Ahlquist, N. C., Covert, D. S., Sheridan, P. J., Arnott, W. P., Ogren, J. A., 2005. A three-wavelength optical extinction cell for measuring aerosol light extinction and its application to determining light absorption coefficient, Aerosol Sci. Technol., 39, 52–67.
Virkkula, A., Makela, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A., Hameri, K., Koponen, I. K., 2007. A simple procedure for correcting loading effects of aethalometer data, J. Air Waste Manage., 57, 1214–1222.
Weingartner, E., Saathof, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers, J. Aerosol Sci., 34, 1445–1463.
Yang, M., Howell, S. G., Zhuang, J., Huebert, B. J., 2009. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China – interpretations of atmospheric measurements during EAST-AIRE, Atmos. Chem. Phys., 9, 2035–2050.
行政院環保署 沙塵網站 (http://dust.epa.gov.tw/dust/zh-tw/)
行政院環保署 空氣品質監測網(http://210.69.101.63/emcv2/logon.aspx?ReturnUrl=%2femcv2%2fDefault.aspx)
林琴軒,2010。北部氣膠超級測站近七年氣膠特性變化探討。國立中央大學環境工程研究所碩士論文。
郭俊江,2006。光達及太陽輻射儀之應用:2005年中壢氣膠光學垂直特性及邊界層高度之變化。國立中央大學大氣物理研究所碩士論文。
徐睿鴻,2007。鹿林山與中壢氣膠光學垂直特性之監測與比較。國立中央大學大氣物理研究所碩士論文。
陳韡鼐。中研院光達資料。
曹哲彰,2001。以雷射雷達量測對流層頂之溫度、高度分布-與無線電探空儀量測資料之比較、分析。國立中央大學物理所碩士論文。
彭啟明, 1993。台灣北部地區混合層高度的觀測與模擬。
詹長權、李崇德、周崇光、莊銘棟、王之群、沈士翔、陳邦瑋、陳美君,2006。94年度「環保署/國科會空汙防制科研合作計畫」-微粒空氣汙染物研究與修訂空氣品質標準之可行性評估 子計畫二:微粒超級測站微粒監測特性。
賈浩平,2008。微脈衝光達及太陽輻射儀之應用:2005-2007年中壢地區氣膠光學垂直特性分析。國立中央大學大氣物理研究所碩士論文。
新莊微粒超級測站,2008。第一季~第四季季報。
廖偉翔,2003。北台灣長程傳輸氣膠光學特性。國立中央大學環境工程研
究所碩士論文。
指導教授 李崇德(Chung-te Lee) 審核日期 2011-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明