博碩士論文 983206013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.191.140.76
姓名 陳虹屹(Hung-yi Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 下水污泥灰衍生之矽鋁含量對合成 Al-MCM-41 結構之影響
(Characterization of Al-MCM-41 and its modification synthesized from sewage sludge ash)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用下水污泥灰當中矽鋁元素做為合成Al-MCM-41之材料,並將污泥灰進行酸處理程序,使用鹼熔法萃取元素矽鋁,改變前驅液當中去離子水添加比例,以探討同時自污泥中萃取出的鋁原子對於Al-MCM-41結構的影響,再將自行合成之Al-MCM-41以後嫁接法進行胺基官能基改質,探討經改質後對於分子篩材料特性之影響。實驗結果發現利用NaOH:ash=1.25:1比例,在400℃下鹼熔可將難溶於水石英相轉變為較易溶於水之矽酸鹽、矽鋁酸鹽相。利用去離子水不同添加比例(L/S=3、7、15、50)萃取之前驅液,主要元素為Si、Al、Fe、Na。未經酸處理之下水污泥灰在液固比3時有最大矽鋁萃取率,矽34.81%、鋁7.78%,四組液固比下矽鋁比最低為13.98,最高僅18.03;經酸處理下水污泥灰矽鋁比範圍由11.89升高至62.88,在液固比3具最大矽萃取率79.14%及鋁最大萃取率37.59%;當液固比升高時,由於NaOH濃度降低、溶液鹼度下降,酸處理污泥灰萃取率因而減少。未經酸處理污泥灰中之二氧化矽佔57.35%,經酸處理程序可將原料當中之鋁、鐵等元素含量降低,提高二氧化矽在污泥灰當中之比例71.43%,但同時會造成鹼熔過後各元素前驅液萃取率上升之現象。在水熱合成Al-MCM-41方面,由X光繞射分析圖譜、化學成分分析、穿透式電子顯微鏡及氮氣吸脫附曲線分析等證明各種條件下皆成功合成分子篩;Al-MCM-41材料中主要成分為Si,Al元素其次;未經酸處理Al-MCM-41產物矽鋁比隨液固比升高而降低,液固比3時產物矽鋁比20.50,液固比50之矽鋁比為7.89;經酸處理Al-MCM-41矽鋁比趨勢相反,液固比3產物矽鋁比為16.89,液固比50矽鋁比39.36;未酸處理及酸處理兩者之Al-MCM-41在矽鋁比各為最大(20.50、39.36)時,具有較大的表面積699.15 m2/g、1057.95 m2/g,且產物之孔徑較小,分別為3.43 nm、3.81 nm,結果說明矽鋁比大可得性質較優良之分子篩材料;FTIR圖譜在960-970 cm-1出現Si-O-Al波峰,證明Al存在Al-MCM-41中;分析改質後Al-MCM-41依舊具有MCM-41特徵波峰;27Al 核磁共振分析方面,除未酸處理液固比50具有一小型八面體鋁波峰(Oh)外,其餘材料在改質後只有一個53±2ppm的波峰(Td);FTIR中,O-H官能基的3431.75 cm-1吸收帶與未改質前相比顯得更平緩,與未改質前之材料相比,改質後在714、1560 cm-1吸收帶有波峰產生,顯示O-H官能基在改質後被胺基官能基所取代,也證實自行合成之Al-MCM-41材料表面確實具有胺基官能基。
摘要(英) This study investigated the feasibility of synthesizing Al-MCM-41 with silicon and aluminum sources that were extracted by alkaline fusion process from sewage sludge ash (SSA). The synthesized and the further surface-modified Al-MCM-41s were characterized, and the adsorption performance was evaluated.
Two types of sewage sludge ash (SSA) as received, and SSA treated with acid, were tested in this study. The results indicate that starting with an alkaline fusion treatment of the SSA (mixed with NaOH by 1:1.25 weight ratio) at 400℃, it rendered the quartz soluble for extraction by forming sodium silicate (Na2SiO3) and sodium aluminum silicate (Na4Al2Si2O9).
After this fusion treatment, silica and aluminum were extracted from the fused solid with deionized water at various tested L/S ratios (i.e., liquid to solid ratio), ranging from 3,7,15 to 50. It was noted that acid-treated SSA showed increased efficiency in Al and Si extraction as compared to the SSA as received. Both the tested SSAs showed the greatest extraction efficiency at L/S=3, and then the extraction efficiencies decreased with increasing L/S ratios. Maximum extraction efficiencies for Si and Al were found to be 34.81 wt% and 7.78 wt%, respectively, for SSA without acid treatment, as compared to those of 79.17 wt% and 37.59 wt% for acid-treated SSA.
The Al-MCM-41 was synthesized by hydrothermal process at 105℃, in the presence of the precursor solution (i.e., as prepared by the above extraction process), ammonium hydroxide, and C16TAB (Cetyltrimethylammonium bromide, as surfactant). After the completion of hydrothermal process, the target products were filtered from the solution and then calcined at 550℃ to remove the surfactant, this resulting in Al-MCM-41 products. However, due to the presence of SSA-derived Al2O3, the Al-MCM-41 thus synthesized incorporated Al into its structure (i.e., referred to as Al-MCM-41), and was reported to have
enhanced the stability of the Al-MCM-41 structure. The composition of Al-MCM-41 as prepared from original SSA was found to contain 86.89-93.21% Si, 3.86-9.58% Al, and trace of other elements, with a 761.65 m2/g surface area, and 0.85 cm3/g pore volume. In contrast, the Al-MCM-41 as prepared from the acid-treated SSA showed a greater surface area of 1057.95 m2/g, and a pore volume of 1.02 cm3/g. For the acid-treated SSA, the extraction efficiencies of Si and Al varied with L/S ratio. This resulted in a wide range of Si/Al ratio in the precursor solutions (i.e.,11.89-62.88) and in the resultant Al-MCM-41
products (i.e., 16.89-39.36). The Al-MCM-41 prepared at higher Si/Al ratio seemed to have better sieve properties (i.e., larger surface area and pore volume.)
Finally, the surface of Al-MCM-41 as synthesized was further modified with 3-aminopropyltriethoxysilane(APTES) to bond ammoniums-functional groups. The surface-modified Al-MCM-41, referred to as ammonium-functionalized mesoporous materials (AFMM), were proved to enhance the adsorption capability of mesoporous sieves.The AFMM was characterized by FT-IR, XRD, TEM and SEM techniques, and BET analysis. The XRD pattern indicated that the structure of AFMM retained the characteristic peaks of MCM-41; and further the FT-IR confirmed the functional groups of -NH2 and N-H around 714 and 1560 cm-1.
This study demonstrated that it is feasible to synthesize Al-MCM-41 using silicon and aluminum sources extracted from sewage sludge ash. An acid-pretreatment of the SSA
would enhance the extraction efficiencies of Si and Al, this resulting in the synthesis of Al-MCM-41, with larger surface area and pore volume. The results may contribute to the recycling of sewage sludge and the production of a green functionalized mesoporous material.
關鍵字(中) ★ Al-MCM-41
★ 酸處理程序
★ 下水污泥灰
★ 鹼熔萃取法
關鍵字(英) ★ sewage sludge ash
★ alkaline fusion
★ acid-washing process
★ Al-MCM-41
論文目次 誌謝 ...............................................i
中文摘要 ..............................................ii
英文摘要 ..............................................iv
目錄 ..............................................vi
圖目錄 ............................................viii
表目錄 ...............................................x
第一章 前言...........................................1
1-1. 研究緣起與目的.................................1
1-2. 研究內容.......................................2
第二章 文獻回顧.......................................3
2-1. 下水污泥..........................................3
2-1-1. 下水污泥來源....................................3
2-1-2. 下水污泥組成性質................................4
2-1-3. 下水污泥處理處置方法............................6
2-2. 中孔徑分子篩......................................9
2-2-1. 中孔徑分子篩發展歷史............................9
2-2-2. 中孔徑分子篩合成...............................10
2-2-3. MCM-41改質.....................................18
2-2-4. Al-MCM-41合成..................................23
2-2-5. Al-MCM-41應用..................................25
2-2-6. 廢棄物合成中孔徑分子篩.........................26
第三章 研究方法......................................28
3-1. 研究架構與內容...................................28
3-2. 實驗材料與設備...................................30
3-2-1. 實驗材料.......................................30
3-2-2. 實驗藥品.......................................31
3-2-3. 實驗設備.......................................32
3-3. 實驗設計.........................................33
3-3-1. 原物料前處理...................................33
3-3-2. 酸處理程序.....................................34
3-3-3. 下水污泥灰合成Al-MCM-41試驗....................34
3-3-4. Al-MCM-41表面官能基改質試驗....................36
3-4. 實驗分析儀器與原理...............................38
3-4-1. 固態核磁共振光譜儀 SSNMR.......................39
3-4-2. 超高真空場發射掃描式電子顯微鏡 HR-SEM .........40
3-4-3. 感應耦合電漿原子放射光譜儀 ICP-AES.............41
3-4-4. 傅立葉轉換紅外線光譜儀 FTIR....................42
3-4-5. X光粉末繞射儀 PXRD.............................43
3-4-6. 原子吸收光譜儀 AAS.............................46
3-4-7. 穿透式電子顯微鏡 TEM...........................49
3-4-8. 氮氣吸附/脫附孔隙分析儀 ASAP...................50
第四章 結果與討論....................................52
4-1. 原料基本性質.....................................52
4-2. 污泥灰合成Al-MCM-41試驗..........................55
4-2-1. 鹼熔萃取SiO2、Al2O3............................56
4-2-2. 水熱法合成Al-MCM-41............................65
4-3. Al-MCM-41表面改質試驗............................84
第五章 結論與建議....................................93
5-1. 結論.............................................93
5-2. 建議.............................................94
參考文獻...............................................95
參考文獻 [1]Adjdir M., Ali-Dahmane T., Friedrich F., Scherer T., Weidler P. G., “The synthesis of Al-MCM-41 from volclay — A low-cost Al and Si source”, Applied Clay Science, Vol.46, pp.185-189, 2009.
[2]Ajaikumar S., Pandurangan A., “Reaction of benzaldehyde with various aliphatic glycols in the presence of hydrophobic Al-MCM-41: A convenient synthesis of cyclic acetals”, Journal of Molecular Catalysis A: Chemical, Vol.290, pp.35-43, 2008.
[3]An D., Guo Y., Zou B., Zhu Y., Wang Z., “A study on the consecutive preparation of silica powders and active carbon from rice husk ash”, Biomass and Bioenergy, Vol.XXX, pp.1-8, 2011.
[4]Anbia M., Lashgari M., “Synthesis of amino-modified ordered mesoporous silica as a new nano sorbent for the removal of chlorophenols from aqueous media”, Chemical Engineering Journal, Vol.150, pp.555-560, 2009.
[5]Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T-W., Olson D. H., Sheppard E. W., McCullen S. B., Higgins J. B., Schlenker J. L.,“A new family of mesoporous molecular sieves prepared with liquid crystal templates”, Journal of American Chemical Society, Vol 114, pp. 10834-10843, 1992.
[6]Bhagiyalakshmi M., Yun L. J., Anuradha R., Jang H. T., “Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to CO2 chemisorption”, Journal of Porous Material, Vol.17, pp.475-484, 2010.
[7]Borade R. B., Clearfield A., “Synthesis of Aluminium Rich MCM-41”, Catalysis Letters, Vol.31, pp.267-272, 1995.
[8]Busio M., Jänchen J., J. H. C. van Hooff, “Aluminum incorporation in MCM-41 mesoporous molecular sieves”, Microporous Materials, Vol.5, pp.211-218, 1995.
[9]Chandrasekar G., You K.-S., Ahn J.-W., Ahn W.-S., “Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash”, Microporous and Mesoporous Materials, Vol.111, pp.455-462, 2008.
[10]Chang H.-L., Chun C.-M., Aksay Ilhan A. and Shih W.-H., “Conversion of Fly Ash into Mesoporous Aluminosilicate”, Industrial and Engineering Chemistry Research, Vol.38, pp.973-977, 1999.
[11]Ciesla U., Schüth F., “Review_Ordered mesoporous materials”, Microporous and Mesoporous Materials, Vol.27, pp.131-149, 1999.
[12]Corma A., Navarro M. T., Pariente J. P., “Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons ”, Journal of the Chemical Society, Chemical Communications, Vol.2, pp.147-148, 1994.
[13]Eimer G. A., Pierella L. B., Monti G. A., and Anunziata O. A., “Synthesis and characterization of Al-MCM-41 and Al-MCM-48”, Catalysis Letters, Vol.78, pp.65-75, 2002.
[14]Eimer G. A., Pierella L. B., Monti G. A., Anunziata O. A., “Preparation and characterization of aluminium – containing MCM-41”, Catalysis Communications, Vol.4, pp.118-123, 2003.
[15]Font O., Moreno N., Díez S., Querol X., López-Soler A., Coca P., Pe˜na F. G., “Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction”, Journal of Hazardous Materials, Vol.166, pp.94–102, 2009.
[16]Halina M., Ramesh S., Yarmo M. A., Kamarudin R. A., “Non-hydrothermal synthesis of mesoporous materials using sodium silicate from coal fly ash”, Materials Chemistry and Physics, Vol.101, pp.344-351, 2007.
[17]Heidari A., Younesi H., Mehraban Z., “Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica”, Chemical Engineering Journal, Vol.153, pp.70-79, 2009.
[18]Hui K. S., Chao C. Y. H., “Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH”, Journal of Hazardous Materials, Vol.B137, pp.1135-1148, 2006.
[19]Idris S. A., Davidson C. M., McManamon C., Morris M. A., Anderson P., Gibson L. T., “Large pore diameter MCM-41 and its application for lead removal from aqueous media”, Journal of Hazardous Materials Vol.185, pp.898-904, 2011.
[20]Janicke M. T., Landry C. C., Christiansen S. C., Birtalan S., Stucky G. D. and Chmelka B. F., “Low Silica MCM-41 Composites and Mesoporous Solids”, Chemistry of Material, Vol.11 , pp.1342-1351, 1999.
[21]Kang F., Wang Q., Xiang S., “Synthesis of mesoporous Al-MCM-41 materials using metakaolin as aluminum source”, Materials Letters, Vol.59, pp.1426-1429, 2005.
[22]Kawi S., Shen S. C., “Effects of structural and non-structural Al species on the stability of MCM-41 materials in boiling water”, Materials Letters, Vol.42, pp.108-112, 2000.
[23]Kawi S., Shen S. C., “Post-synthesis alumination of Si-MCM-41 by A1(NO3)3(II): Enhancement of hydrothermal, mechanical and chemical stabilities”, Studies in Surface Science and Catalysis, Vol.129, pp.227-234, 2000.
[24]Kordatos K., Gavela S., Ntziouni A., Pistiolas K. N., Kyritsi A., Kasselouri-Rigopoulou V., “Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash”, Microporous and Mesoporous Materials, Vol.115, pp.189-196, 2008.
[25]Kozhevnikov I. V., Sinnema A., Jansen R. J. J., Pamin K. and Bekkum H., “New Acid Catalyst Comprising Heteropoly Acid on a Mesoporous Molecular Sieve MCM-41”, Catalysis Letters, Vol.30, pp.241-252, 1995.
[26]Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C. and Beck J. S., “Ordered mesoporous molecular sieves synthesized by a liquia-crystal template mechanism”, Nature, Vol.359, pp.710-712, 1992
[27]Kruk M., Jaroniec M., Sayari A., “Structural and surface properties of siliceous and titanium-modified HMS molecular sieves”, Mlicroporous Material1, Vol.9, pp.173-182, 1997.
[28]Kumar P., Mal N., Oumi Y., Yamana K. and Sano T., “Mesoporous materials prepared using coal fly ash as the silicon and aluminium source”, Journal of Material Chemistry, Vol.11, pp.3285-3290, 2001.
[29]Lam K. F., Yeung K. L., McKay G., “An Investigation of Gold Adsorption from a Binary Mixture with Selective Mesoporous Silica Adsorbents”, The Journal of Physical Chemistry B, Vol.110, pp.2187-2194, 2006.
[30]Lam K. F., Yeung K. L., Mckay G., “Efficient Approach for Cd2+ and Ni2+ Removal and Recovery Using Mesoporous Adsorbent with Tunable Selectivity”, Environmental of Science Technology, Vol.41, pp.3329-3334, 2007.
[31]Lawrence M. J., “Surfactant Systems: Their Use in Drug Delivery”, Chemical Society Reviews, Vol.23, pp.417-424, 1994.
[32]Lee C.-K., Liu S.-S., Juang L.-C., Wang C.-C., Lin K.-S., Lyu M.-D., “Application of MCM-41 for dyes removal from wastewater”, Journal of Hazardous Materials, Vol.147, pp.997-1005, 2007.
[33]Luan Z., Cheng C.-F., Zhou W., and Klinowski J., “Mesopore Molecular Sieve MCM-41 Containing Framework Aluminum”, Journal of Physics and Chemistry, Vol.99, pp.1018-1024, 1995 ..
[34]Luan Z., Zhao D., He H., Klinowski J., and Kevan L., “Characterization of Aluminophosphate-Based Tubular Mesoporous Molecular Sieves”, Journal of Physics Chemistry B, Vol.102, pp.1250-1259, 1998.
[35]Mark E. D., “Organizing for better synthesis”, Nature, Vol.364, pp.391-393, 1993.
[36]Matsumoto A., Chen H., Tsutsumi K., GruÈn M., Unger K., “Novel route in the synthesis of MCM-41 containing framework aluminum and its characterization”, Microporous and Mesoporous Materials, Vol.32, pp.55-62, 1999.
[37]Misran H., Singh R., Begum S., Yarmo M. A., “Processing of mesoporous silica materials (MCM-41) from coal fly ash”, Journal of Materials Processing Technology, Vol.186, pp.8-13, 2007.
[38]Monnier A., Schuth F., Huo Q., Kumar D., Margolese D., Maxwell R. S., Stucky G. D., Krishnamurty M., Petroff P., Firouzi A., Janicke M., Chmelka B. F., “Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures”, Science, Vol.261, pp.1299-1303, 1993.
[39]Moreno N., Querol X., L´opez-Soler A., Andres J. M., Janssen M., Nugteren H., Towler M. and Stanton K., “Determining suitability of a fly ash for silica extraction and zeolite synthesis”, Journal of Chemical Technology and Biotechnology, Vol.79, pp.1009-1018, 2004.
[40]Moreno N., Querol X., Plana F., Andres J. M., Janssen M. and Nugteren H., “Pure zeolite synthesis from silica extracted from coal fly ashes”, Journal of Chemical Technology and Biotechnology, Vol.77, pp.274-279, 2002.
[41]Myers D., Surfactant Science and Technology, Wiley-InterScience, New Jersey, 1992.
[42]Saad R., Hamoudi S., Belkacemi K., “Adsorption of phosphate and nitrate anions on ammonium-functionnalized mesoporous silicas”, Porous Materials, Vol. 15, pp.315-323, 2008.
[43]Schubert U., Husing N., “Synthesis of inorganic materials”, Wiley-Interscience, New York, 2000.
[44]Sepehrian H., Ahmadi S. J., Waqif-Husain S., Faghihian H., Alighanbari H., “Adsorption Studies of Heavy Metal Ions on Mesoporous Aluminosilicate, Novel Cation Exchanger”, Journal of Hazardous Materials, Vol.176, pp.252-256, 2010.
[45]Sert S., Eral M., “Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2 –MCM-41) using statistical design method”, Journal of Nuclear Materials, Vol.406, pp.285-292, 2010.
[46]Siriluk C. and Yuttapong S., “Structure of Mesoporous MCM-41 Prepared from Rice Husk Ash”, The 8th Asian Symposium on visualization, Chaingmai, Thailand, 23-27 MAY 2005.
[47]Soler-Illia G. J. de A. A., Sanchez C., Lebeau B., Patarin J., “Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical Structures”, Chemical Reviews, Vol 102, pp. 4093-4138, 2002.
[48]Souza M. J. B., Araujo Antonio S., Pedrosa A. M. G., Marinkovic B. A., Jardim P. M., Jr. E. M., “Textural features of highly ordered Al-MCM-41 molecular sieve studied by X-ray diffraction, nitrogen adsorption and transmission electron microscopy”, Materials Letters, Vol.60, pp.2682-2685, 2006.
[49]Steel A., Carr S. W. and Anderson M. W., “14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates”, Journal of the Chemical Society, Chemical Communications, pp.1571-1572, 1994.
[50]Sun Y., Yue Y., Gao Z., “Synthesis and characterization of AlMCM-41 molecular sieves”, Applied Catalysis A: General, Vol.161, pp.121-127, 1997.
[51]Wan Y., Ma J., Wang Z., Zhou W., “Synthesis of MCM-41 with high content of framework aluminum using mixed templates”, Microporous and Mesoporous Materials, Vol.76, pp.35-40, 2004.
[52]Wang C.-F., Li J.-S., Wang L.-J., Sun X.-Y., “Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method”, Journal of Hazardous Materials, Vol.155, pp.58-64, 2008.
[53]Yokoi T., Yoshitake H. and Tatsumi T., “Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes”, Journal of Material Chemistry, Vol.14, pp.951-957, 2004.
[54]Yu H., Xue X., Huang D., “Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings”, Materials Research Bulletin, Vol.44, pp.2112-2115, 2009.
[55]Zhao X. S., Lu G. Q.(Max) and Millar G. J., “Review_Advances in Mesoporous Molecular Sieve MCM-41”, Industrial and Engineering Chemistry Research, Vol.35, pp.2075-2090, 1996.
[56]內政部營建署,http://www.cpami.gov.tw/,2011。
[57]王一雄、陳尊賢、李達源,「土壤污染學」,國立空中大學,台灣,1997。
[58]王書駿,「MCM-41 孔徑控制之研究」,國立中央大學化學工程與材料工程研究所,碩士論文,2005。
[59]何品晶、顧國維、李篤中,「城市污泥處理與利用」,科學出版社,北京,2003。
[60]周書賢,「合成及鑑定高水熱穩定性中孔分子篩MCM-41」,私立中原大學化學研究所,碩士論文,2003。
[61]林麗娟,「X光繞射原理及其應用」,X光材料分析技術與應用專題,100-109頁,工業材料86期,1994年2月。
[62]邱英嘉,「都會下水污泥及其焚化灰渣之輕質資材化研究」,國立中央大學環境工程研究所,博士論文,2005。
[63]常燕,金胜明,关豪元,付英,杨敏,杨华明,邱冠周,「AlMCM-41 的水热合成及其孔结构表征」,中南大學學報(自然科學版),第三十九卷第二期,262-267頁,2008。
[64]黃子光,「下水污泥灰合成中孔徑分子篩及表面改質吸附重金屬之研究」,國立中央大學環境工程研究所,碩士論文,2010。
[65]黃富昌,「土壤結構及化性對有機污染物吸/脫附特性之研究」,國立中央大學環境工程研究所,博士論文,2004。
指導教授 王鯤生(Kuen-Sheng Wang) 審核日期 2011-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明