博碩士論文 983206007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.219.8.25
姓名 陳依旻(Yi-min Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 薄膜生物處理系統(MBR)中溶解性微生物產物(SMP)特性與影響之研究
(Characteristics and effects of soluble microbial products in membrane bioreactors.)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究選用三種不同性質廢水,包括TFT-LCD光電業廢水、生活污水及毛滌業廢水,各自經前置處理後進入其MBR處理而出流;分別對原廢水、MBR進流、槽中及出流水進行水質採樣分析與SMP組成成份分析,並取MBR出流水進行UF膜濾實驗,觀察不同性質廢水經MBR處理所產生的SMP特性與影響。
研究結果顯示TFT-LCD廢水屬於高氨氮廢水,經過AOAO程序處理去除水中七成以上的SCOD、DOC,而經MBR處理去除八成以上的有機物質及三成雙鍵物質,分子量分佈由廣泛分佈於208Da至>6kDa轉變為主要分佈於<3kDa為主,槽中薄膜去除了大部份大於6kDa之物質,MBR槽中微生物於基質充足的情況下,所產生的SMP以UAP類為主,而出流水中以SMP含量(碳水化合物與蛋白質成份)居多;DW廢水為易分解廢水,水質較為穩定且易處理,經MBR處理去除八成SCOD、六成DOC,對於雙鍵物質去除效率較差僅5%,其分子量分佈由大於3kDa轉變為以小於3kDa為主,MBR中微生物產生的SMP含量及變異性均較低,以EEM分析可知出流水中含有多量的腐植酸成份物質殘留,與文獻比較可推論槽中SMP應為BAP類;WPI水質特性為難分解廢水,經過其前置處理程序去除九成左右的SCOD及DOC,廢水中含有較多雙鍵成份物質,這些有機物經MBR處理可再去除五成左右,然而雙鍵物質僅能再去除兩成,故出流水中仍含較高濃度的雙鍵物質存在,水中物質以分子量小208Da為主,MBR槽中微生物於基質不足且難分解的情況下,產生BAP類SMP,且包含許多腐植酸成份物質,使得出流水中SMP含量高且變異性大,且造成出流水中SCOD、DOC含量較高。
使用30kDa的UF膜處理TFT-LCD之MBR出流水,膜面未形成濾餅層,滲透液通量緩慢下降;對於DW及WPI之MBR出流水而言,膜面觀察出蛋白質類及含羧酸官能基之物質,顯示UF薄膜會截留大部分疏水性蛋白質成份的SMP,而多數的碳水化合物成份及腐植酸成份物質則殘留於UF滲透液中。
摘要(英) The purpose of this study was to investigate the characteristics and effects of soluble microbial products (SMP) produced from pre-treatment processes and membrane bioreactors for treating different types of wastewater, including TFT-LCD industry wastewater(TFT-LCD), domestic wastewater(DW), and wool processing industry wastewater(WPI). The samples were analysed with water quality and the composition of SMP for raw wastewater, the influent of MBR, the inside of MBR and the effluent of MBR. After that, the effluent of MBR was filtrated by UF membrane to observe the properties of SMP.
The result shows that TFT-LCD was a high concentration of ammonia-nitrogen wastewater. The removal efficiencies of organic compounds are more than 70% for pre-treatment process. The efficiency was increased to 80% and the MW distribution was changed from between >3kDa and 6kDa to <3kDa after the treatment of MBR. Due to the sufficiency of substrate in MBR, the component of SMP was formed with the major of UAP as well as there was a plenty of the carbohydrate and protein in the effluent of MBR. On the treatment of DW wastewater, which was easily biodegradable, the removal efficiency of organic compounds was 60-80% and MW distribution was changed from >3kDa to <3kDa after the treatment of MBR. Although the removal of organic compounds with double bond was only 5%, the concentration of SMP was low as well as the major component was humic substances analysed by EEM. The component of SMP may infer the major of BAP from the contrast with literature. On the treatment of WPI wastewater, which was a refractory organic wastewater, the removal efficiencies of SCOD and DOC are about 90% for pre-treatment process. These organic compounds were further degraded to acquire another 50% removal efficiency and a little removal of double-bond substance. Consequently, there are more residual humic acids, SMP, high SCOD and DOC concentration in the effluent of MBR. However, the major region of MW distribution was <208Da and the component of SMP was the type of BAP.
On the filtration of 30kDa UF membrane, there is no cake layer on membrane surface and permeate flux decline slowly at the filtration of MBR effluent for TFT-LCD. Nevertheless, the observance found protein-like material and carboxylic acid functional group on the surface of UF membrane. This revealed that most of hydrophobic protein of SMP was rejected by membrane, on the other hand, carbohydrate and humic acid material was permeate into the effluent of UF.
關鍵字(中) ★ UF薄膜過濾
★ 薄膜生物處理系統
★ 溶解性微生物產物
★ SMP組成
關鍵字(英) ★ soluble microbial products(SMP)
★ membrane bioreactor(MBR)
★ UF membrane filtration
★ SMP components
論文目次 目錄i
圖目錄iv
表目錄vi
第一章 前言01
1.1 研究緣起01
1.2 研究目的02
第二章 文獻回顧03
2.1 SMP之定義03
2.1.1 SMP之分類05
2.1.2 SMP產生的因素08
2.2 SMP之特性10
2.2.1分子量之分佈10
2.2.2 SMP的螯合特性11
2.2.3 生物降解性13
2.2.4 毒性14
2.2.5 親疏水性與電荷性質14
2.3 SMP的定性與定量15
2.4 SMP對MBR處理程序之影響21
2.4.1 處理程序操作參數影響SMP產生量22
2.5 薄膜種類與過濾方式24
2.5.1 薄膜種類介紹24
2.5.2 膜過濾方式與技術25
2.5.3 薄膜程序處理MBR出流水27
第三章 分析方法29
3.1 實驗材料29
3.2 實驗藥品36
3.3 實驗設備與儀器36
3.4 實驗項目與步驟39
3.5 分析項目與方法41
3.5.1 基本水質分析42
3.5.2 有機物含量分析43
3.5.3 SMP含量計算與分析方法46
3.5.4 膜面分析52
第四章 結果與討論55
4.1 光電業廢水(TFT-LCD)55
4.1.1 TFT-LCD之原水水質55
4.1.2 TFT-LCD廢水經MBR處理58
4.2 生活污水(DW)61
4.2.1 DW之原水水質61
4.2.2 DW污水經MBR處理62
4.3 毛滌業廢水(WPI)64
4.3.1 WPI之原水水質64
4.3.2 WPI廢水經MBR處理67
4.4 廢水經MBR處理之SMP組成成份69
4.5 廢水之MBR出流水經UF膜濾後水質特性83
4.5.1 MBR出流水及經UF膜濾出流水之水質83
4.5.2 MBR出流水經UF膜濾之SMP含量變化86
4.5.3 綜合討論90
4.6 廢水之MBR出流水經UF膜濾後膜面與通量變化91
4.6.1 MBR出流水經UF膜濾之膜面變化91
4.6.2 MBR出流水經UF膜濾之滲透液通量變化98
第五章 結論與建議101
5.1 結論101
5.2 建議103
參考文獻104
附錄113
參考文獻 1.Adrienne, M. and M. Eberhard, “Mechanisms of SMP production in membrane bioreactors: Choosing an appropriate mathematical model structure.” Water Research, 44, pp. 5240-5251 (2010)
2.Aquino, S. F. and D. C. Stuckey, “Integrated model of the production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions.” Biochemical Engineering Journal, 38, pp. 138–146 (2008)
3.Aquino, S. F. and D. C. Stuckey, “Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds.” Water Research, 38, pp. 255–266 (2004)
4.Barker, D. J., G. A. Mannucchi, S. M. L. Salvi, and D. C. Stuckey, “Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents.” Water Research, 33, pp. 2499-2510 (1999)
5.Barker, D. J., S. M. L. Salvi, A. A. M. Langenhoff, and D. C. Stuckey, “Soluble microbial products in ABR treating low-strength wastewater.” J. Envir. Engrg., 126, pp. 239-249 (2000)
6.Barker, D. J. and D. C. Stuckey, “A review of soluble microbial products (SMP) in wastewater treatment systems.” Water Research, 33, pp. 3063–3082 (1999)
7.Barker, D. J. and D. C. Stuckey, “Modeling of soluble microbial products in anaerobic digestion: The effect of feed strength and composition.” Water Research, 73, pp. 173-184 (2001)
8.Bradford, M. M., “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding.” Analytical Biochemistry, 72, pp. 248-254 (1976)
9.Chang, E. E., P. C. Chiang, Y. W. Ko, and W. H Lan, “Characteristics of organic precursors and their relationship with disinfection by-products.” Chemosphere, 44, pp. 1231-1236 (2001)
10.Chen, W., P. Westerhoff, J. A. Leenheer, and K. Booksh, “Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter.” Environ. Sci. Technol., 37, pp. 5701-5710 (2003)
11.Chuang, S. H., W. C. Chang, M. C. Chang, and M. A. Sung, “The effects of soluble organic matters on membrane fouling index.” Bioresour. Technol., 100, pp. 1875-1877(2009)
12.Dong, B. and S. Jiang, “Characteristics and behaviors of soluble microbial products in sequencing batch membrane bioreactors at various sludge retention times. ” Desalination, 243, pp. 240–250 (2009)
13.Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances.” Analytical chemistry, 28, (1956)
14.Eaton, A. D., L. S. Clesceri, and A. E. Greenberg, “Standard Methods for the examination of water and wastewater.” 19th Edition, APHA, AWWA, WEF, Washington (1995)
15.Edzwald, J. K. and J. E. Tobiason, “Enhanced coagulation: Us requirements and a broader view.” Water Science and Technology, 40, pp. 63-70 (1999)
16.Gao, F. S., X. F. Li, G. C. Du, and J. Chen, “Relation of soluble microbial product versus sludge properties in membrane bioreactor.” Journal of Food Science and Biotechnology, 24, pp. 25-29 (2005)
17.Gao, M., M. Yang, H. Li, Q. Yang, and Y. Zhang, “Comparison between a submerged membrane bioreactor and a conventional active sludge system on treating ammonia-bearing inorganic wastewater.” Journal of Biotechnology, 108, pp. 265-269 (2004)
18.Griebe, T., G. Schaule, and S. Wuertz, “Determination of microbial respiratory and redox activity in activated sludge.” Journal of Industrial Microbiology & Biotechnology, 19, pp. 118-122 (1997)
19.Hocaoglu, S. M. and D. Orhon, “Fate of soluble residual organics in membrane bioreactor.” Journal of Membrane Science, 364, pp. 65-74(2010)
20.Holakoo, L., G. Nakhla, E. K. Yanful, and A. S. Bassi, “Chelating properties and molecular weight distribution of soluble microbial products from an aerobic membrane bioreactor.” Water Research, 40, pp. 1531-1538 (2006)
21.Howe, K. J. and M. M. Clark, “Fouling of microfiltration and ultrafiltration membranes by natural waters.” Environ. Sci. Technol., 36, pp. 3571-3576 (2002)
22.Huang, G., G. Jin, J. Wu, and Y. Liu, “Effects of glucose and phenol on soluble microbial products (SMP) in sequencing batch reactor systems.” International Biodeterioration & Biodegradation, 62, pp. 104-108 (2008)
23.Huang, X., R. Liu, and Y. Qian, “Behaviour of soluble microbial products in a membrane bioreactor.” Process Biochemistry, 36, pp. 401-406 (2000)
24.Jang, N., X. Ren, G. Kim, C. Ahn, J. Cho, and I. S. Kim, “Characteristics of soluble microbial products and extracellular polymeric substances in the membrane bioreactor for water reuse.” Desalination, 202, pp. 90–98 (2007)
25.Jarusutthirak, C. and G. Amy, “Role of Soluble Microbial Products (SMP) in Membrane Fouling and Flux Decline.” Environ. Sci. Technol., 40, pp. 969-974 (2006)
26.Jarusutthirak, C. and G. Amy, “Understanding soluble microbial products(SMP) as a component of effluent organic matter(EfOM). ” Water Research, 41, pp. 2787–2793 (2007)
27.Jiang, S. and Z. Liu, “The meaning of UV254 as an organic matter monitoring parameter in water supply and wastewater treatment. ” Journal of Chongqing Jianzhu University, 24, pp. 61–65 (2002)
28.Jiang, T., “Characteristics and Modelling of soluble microbial products in Membrane Bioreactors.”, PhD thesis, Ghent University, Belgium, pp. 241, (2007)
29.Jiang, T., M. D. Kennedy, V. D. Schepper, S. N. Nam, I. Nopens, P. A. Vanrolleghem, and G. Amy, “Characterization of soluble microbial products and their fouling impacts in membrane bioreactors.” Environ. Sci. Technol., 44, pp. 6642-6648 (2010)
30.Jiang, T., S. Myngheer, Dirk J. W. De Pauw, H. Spanjers, I. Nopens, M. D. Kennedy, G. Amy, and P. A. Vanrolleghem, “ Modeling the production and degradation of soluble microbial products (SMP) in membrane bioreactors (MBR).” Water Research, 42, pp. 4955-4964 (2008)
31.Judd, S. and C. Judd, “The MBR Book Principles and Applications of membrane bioreactors in water and wastewater treatment.” ISBN-10 1-85-617481-6 (2006).
32.Kimura, K., T. Naruse, and Y. Watanabe, “Changes in characteristics of soluble microbial products in membrane bioreactors associated with different solid retention times: Relation to membrane fouling.” Water Research, 43, pp. 1033-1039 (2009)
33.Kruger, N. J. and J. M. Walker, “The Bradford Method for Protein Quantitation.” The Protein Protocols Handbook, 2nd Edition(1998)
34.Kumar, M. and R. K. Upreti, “Impact of lead stress and adaptation in Escherichia coli.” Ecotoxicol Environ Saf. , pp. 246-252. (2000)
35.Laspidou, C. S. and B. E. Rittmann, “A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. ” Water Research, 36, pp. 2711–2720 (2002)
36.Liang, S., C. Liu, and L. Song, “Soluble microbial products in membrane bioreactor operation: Behaviors, characteristics, and fouling potential.” Water Research, 41, pp. 95–101 (2007)
37.Liu, R., X. Huang, B. Fan, M. Fijimoto, and Y. Qian, “Progress of studies on soluble microbial products in a membrane bioreactor.” Techniques and Equipment for Envirinmental Pollution Control, 3, pp. 1-7 (2002)
38.Liu, R., X. Huang, J. Xi, and Y. Qian, “Microbial behavior in a membrane bioreactor with complete sludge retention. ” Process Biochemistry, 40, pp. 3165-3170 (2005)
39.Masuko, T. A. M., N. Iwasaki, T. Majima, S. I. Nishimura, and Y. C. Lee, “Carbohydrate analysis by a phenol–sulfuric acid method in microplate format.” Analytical Biochemistry, 339, pp. 69–72(2005)
40.Ng, K. K., C. F. Lin, S. K. Lateef, S. C. Panchangam, P. K. A. Hong, and P. Y. Yang, “The effect of soluble microbial products on membrane fouling in a fixed carrier biological system.” Separation and Purification Technology, 72, pp. 98-104(2010)
41.Ni, B. J., R. J. Zeng, F. Fang, W. M. Xie, G. P. Sheng, and H. Q. Yu, “Fractionating soluble microbial products in the activated sludge process.” Water Research, 44, pp. 2292-2302 (2010)
42.Okamura, D., Y. Mori, T. Hashimoto, and, K. Hori, “Identification of biofoulant of membrane bioreactors in soluble microbial products.” Water Research, 43, pp. 4356-4362 (2009)
43.Pan, J. R., Y. C. Su, C. Huang, and H. C. Lee, “Effect of sludge characteristics on membrane fouling in membrane bioreactors.” Journal of Membrane Science, 349, pp. 287-294 (2010)
44.Pan, J. R., Y. Su, and C. Huang, “Characteristics of soluble microbial products in membrane bioreactor and its effect on membrane fouling.” Desalination, 250, pp. 778-780 (2010)
45.Park, N., B. Kwon, I. S. Kim, and J. Cho, “Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): Characterizations, flux decline, and transport parameters.” Journal of Membrane Science, 258, pp. 43-54 (2005)
46.Ping, W. Z. and Z. Tong, “Characterization of soluble microbial products (SMP) under stressful conditions.” Water Research, 44, pp. 5499-5509 (2010)
47.Ramesh, A., D. J. Lee, and S. G. Hong, “Soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge.” Microbiol Biotechnol, 73, pp. 219–225 (2006)
48.Richard, W. B., “Membrane technology and applications,” John Wiley and Sons, New York(2004).
49.Rittmann, B. E. and P. L. McCarty, “Environmental Biotechnology: Principle and Applications.” McGraw-Hill, Boston (2001)
50.Rosenberger, S., C. Laabs, B. Lesjean, R. Gnirss, G. Amy, M. Jekel, and J.-C. Schrotter, “Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment.” Water Research, 40, pp. 710-720 (2006)
51.Rosenberger, S., H. Evenblij, S. te Poele, T. Wintgens, and C. Laabs, “The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes-six case studies of different European research groups.” Journal of Membrane Science, 263, pp. 113-126 (2005)
52.Shen, Y., W. Zhao, K. Xiao, and X. Huang, “A systematic insight into fouling propensity of soluble microbial products in membrane bioreactors based on hydrophobic interaction and size exclusion.” Journal of Membrane Science, 346, pp. 187-193 (2010)
53.Shin, H. S. and S.T. Kang, “Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times, ” Water Research, 37, pp. 121-127 (2003)
54.Tansel, B. and N. Dizge, “Competitive effects and interactions during sorption of SMP fractions on activated carbon: Response surface approach for visualization of sorption profiles.” Journal of Environmental Management, 92, pp. 596-602 (2011)
55.Tian, Y., L. Chen, S. Zhang, and S. Zhang, “A systematic study of soluble microbial products and their fouling impacts in membrane bioreactors.” Chemical Engineering Journal, 168, pp. 1093-1102 (2011)
56.Tian, Y., L. Chen, and T. Jiang, “Characterization and modeling of soluble microbial products in membrane bioreactor.” Separation and Purification Technology , 76, pp. 316-324 (2011)
57.Wang, Z. P. and T. Zhang “ Characterization of soluble microbial products (SMP) under stressful conditions.” Water Research, 44, pp. 5499-5509 (2010)
58.Whitesell, J. K. and M. A. Fox, “Organic Chemistry (2nd)” ISBN-10: 0763701785 (1997)
59.Xu, J., G. P. Sheng, H. W. Luo, F. Fang, W. W. Li, R. J. Zeng, Z. H. Tong, and H. Q. Yu, “Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis.” Water Research, 45, pp. 674-680 (2011)
60.Zhou, W., B. Wu, Q. She, L. Chi, and Z. Zhang, “Investigation of soluble microbial products in a full-scale UASB reactor running at low organic loading rate.” Bioresource Technology, 100, pp. 3471-3476 (2009)
61.「廢水薄膜處理技術應用與推廣手冊」,經濟部工業局,(2000)
62.杜世彬、郭志豪、陳明鴻、李秋明、陳郁良、林永壽,「光電產業TMAH廢水特性之分析與研究」,第十五屆下水道與水環境再生研討會論文集,pp. 136-143,(2005)
63.林何印,「超濾與逆滲透薄膜程序處理及回收工業廢水之研究」,國立中央大學環境工程研究所碩士論文,(2005)
64.林敬傑,「薄膜程序處理及回收薄膜生物反應槽(MBR)出流水之研究」,國立中央大學環境工程研究所碩士論文,(2007)
65.林智仁、羅聖全,「場發射穿透式電子顯微鏡簡介」,工業材料雜誌 第201 期,pp. 90-98, (2003)
66.林昇衡,「高總有機碳原水處理之研究」,國立成功大學環境工程研究所碩士論文,(2004)
67.林育彰,「藻體胞外有機物特性之研究」,國立成功大學環境工程學系碩士論文,(2007)
68.環檢所,水質檢測標準分析方法
69.黃國豪、黃耀輝、張湘棋、卓連泰,「羊毛加工廢水處理改善工程規劃」,經濟部工業局工業污染防治研討會論文集,(1998)
70.陳延光、倪振鴻、陳重男,「生物薄膜與逆滲透程序應用於TFT-LCD製程廢水處理與回收再利用」,工業污染防制期刊第89期,(2004)
71.張信貞,「膠體滲透層析儀(GPC)之原理與應用」,工研院化工所,科儀新知 第十卷第一期,(1988)
72.朱敬平,「薄膜單元於廢水回收之應用」,中興社環境工程研究中心,(1995)
73.莊榮輝,「Biochemistry Basics 生物化學基礎」,國立台灣大學生化科學系教科書,(2007)
74.中興工程顧問社,「高科技產業廢水水質特性分析及管制標準探討計畫」,行政院環保署,(2007)
75.蔡博年,「溶解性微生物產物與胞外聚合物質之特性與過濾行為」,國立台灣大學化學工程研究所碩士論文,(2007)
76.蘇遠志、黃世佑「微生物化學工程學」,華香園出版社,(1999)
77.宋昭瑩,「鈣離子對UF薄膜有機積垢之影響」,國立交通大學環境工程研究所碩士論文,(2005)
78.易光輝、莊麗津、劉惠銘、吳姿燕、徐照程合譯「有機化學」,學富文化事業有限公司,(2001)
79.歐陽嶠暉,「下水道工程學:水環境水再生工程學」,長松文化,(2005)
指導教授 曾迪華(Dyi-hwa Tseng) 審核日期 2011-12-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明