博碩士論文 90343001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:18.116.65.125
姓名 王萬益(Wan-yi Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 修正結構動態再分析之探討
(Eigenvalue Reanalysis of Structural Modification)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 結構修正再分析問題對於結構分析、再設計及最佳化過程中不斷扮演關鍵性角色。本文在對已有的一些研究文獻和成果綜述的基礎上,就如何提高結構修正動態再分析方法的精度、計算速度以及收斂範圍等內容開展了進一步研究。
隨著科技的進步,人們對工程結構的特性和品質要求越來越高,很多複雜因素在設計階段就必須加以考慮,導致結構動力學模型自由度數目的日益增長,應用正規方法對其動態特性進行一次計算分析就需耗費可觀的時間、經費和人力,有時甚至是行不通的。故如何降低計算花費是結構修正再分析的重點。結論是要降低計算花費,必須在進行修正再分析時,避免對修正結構再進行完整分析,經前人之研究,以初始結構之動態資訊作為再分析之依據,選擇適當的再分析方法,將可有效達到預期目標。因此初始結構動態資訊之精確與否,將影響再分析之結果。本文以矩陣為基礎之Chebyshev 譜法,即所謂的微分化矩陣,解析結構動態特性。並經由Matlab矩陣特徵值指令去分析具有不同邊界條件之結構的模態參數。接著,利用初始結構資訊進行結構再分析探討。首先由精確解為著眼點,以代數方法探討修正結構再分析問題,以等慣性轉換求解動態勁度矩陣之隱根,並導出將特徵值定位的計算方法;繼而在隱根為已知下探討隱向量的特質及解法。接著探討修正結構再分析之近似解法。本文舉出多種近似解法並以數值例比較各算法之精確度,進而選用以縮減基為依據之組合近似法作為再分析最佳工具。作者首先探討縮減基之理論背景,進而以此為依據深入綜整組合近似法於靜態結構及動態結構之解法及其精確度之掌握。其結果顯示無論結構小修正或大修改,組合近似法均能有效且精確的得到近似解。
摘要(英) The problem of structural modification and reanalysis plays a key role in the structure analysis, redesign and optimization of a structural system. Based on the previous researches, the present thesis tends to investigate deeply the methods of structural modification and dynamic reanalysis to increase the accuracy and computational efficiency under the same convergent criterion.
As the advance of technology, the request for the characteristics and qualification of engineering structure becomes higher and higher. Many complex factors must be taken into consideration during the design stage, and it results in the increase of freedom in the structural dynamic model. The conventional, one-time computational analysis for the dynamic characteristics is highly consumed in time, cost, and man-power, and may not be workable sometime. The structural modification and reanalysis aims to reduce the computational cost. To reduce the computational cost, a complete analysis of the modified structure is avoided in the redesign and reanalysis stage. Based on the previous researches, the dynamic information of the original structure can be used as the basis of the reanalysis. A proper analytical method, plus accurate dynamic information of the original structure, will largely affect the results of reanalysis.
The present thesis analyzes the structural dynamic characteristics by the matrix-based Chebyshev spectral method, or so called differentiation matrix method. A m-file of matrix characteristic value in Matlab is then adopted to analyze the model parameters of the structure subjected to different boundary conditions. The structure reanalysis is then preceded based on the initial structural information.
To assure accurate solutions, algebraic method is used to investigate the modified structural, re-analysis problem, equal inertia transformation is then used to find out the implicit roots of the dynamic, stiffness matrix. A computational method is derived to find out the eigenvalues. Based on the known implicit roots, the characteristics and solutions of the implicit vectors are investigated. The present thesis illustrates several approximate methods and compares the corresponding accuracy. A combined approximation method based on the reduced basis is then used as the best tool of reanalysis. The present thesis investigates the theoretical ground of reduced basis, and then derives the solutions by combined approximate method for static structural system, as well as dynamic structural system. Results show that the combined approximate can effectively and accurately find out the approximate solutions for a minor modified structure, even for a major modified structure.
關鍵字(中) ★ 特徵值 關鍵字(英) ★ Eigenvalue
論文目次 謝誌..............................................................................................................I
摘要.............................................................................................................II
ABSTRACT.........................................................................................................IV
目錄.............................................................................................................VI
附圖目錄.........................................................................................................XI
附表目錄........................................................................................................XII
符號說明........................................................................................................XIV
第一章 導論......................................................................................................1
1.1 結構動態再分析技術的發展與現狀.............................................................................1
1.2 結構修正後動態再分析的主要分類.............................................................................3
1.3 本文架構...................................................................................................5
第二章 以矩陣為基礎之契巴雪夫譜法解析結構動態特性................................................................8
2.1 微分化矩陣及Chebyshev 譜方法............................................................................10
2.1.1 微分化矩陣(differentiation matrix).....................................................................10
2.1.2 Chebyshev 譜方法.......................................................................................12
2.2. 邊界值(boundary value)問題...............................................................................14
2.3.邊界條件於Chebyshev 譜矩陣中之處理........................................................................17
2.4. 例題:以Chebyshev 譜法解析非均勻Timo shenko樑之自由振動
..........................................................................................................19
2.5.數值例結果................................................................................................24
2.6.結論......................................................................................................26
第三章 以代數方法探討修正結構再分析問題之精確解.................................................................31
3.1結構修改之統御方程式........................................................................................32
3.2修改後結構之模式分析.......................................................................................34
3.3矩陣之譜切(Spectrum Slicing)公式...........................................................................35
3.4數值勘根(Root-finding)法...................................................................................37
3.5求解隱向量.................................................................................................40
3.6數值例與討論...............................................................................................43
3.7結論.......................................................................................................45
第四章 修正後結構動態再分析近似解之方法.........................................................................49
4.1.矩陣微擾之特徵值分析......................................................................................50
4.2改良型矩陣微擾法...........................................................................................52
4.2.1 William B. Bickford法......................................................................................52
4.2.2 Chen’s法..................................................................................................53
4.3.混合法.......................................................................................................53
4.3.1 Pade’ 近似法..............................................................................................53
4.3.2.組合近似法.................................................................................................55
4.5.數值例.......................................................................................................55
第五章 以縮減基(reduced basis)理論探討結構再分析................................................................58
5.1. 縮減基之應用基礎.........................................................................................59
5.2 一維設計變數局部近似之推導................................................................................59
5.3 多維設計變數局部近似之推導................................................................................63
5.4. 導數模式之實際計算.......................................................................................64
5.5. Krylov 序列與 Krylov 次空間..............................................................................65
5.6 十段組合椼樑之導數模式....................................................................................66
5.7. Krylov 次空間法與組合近似法之等效關係....................................................................67
第六章 組合近似法於結構再分析之應用.............................................................................73
6.1 靜態結構組合近似法再分析..................................................................................73
6.1.1修正結構靜態再分析架構...................................................................................73
6.1.2. 組合近似法.............................................................................................75
6.1.2.1以縮減基描述位移向量...................................................................................75
6.1.2.2 選擇基向量............................................................................................75
6.1.2.3 建立獨立基向量........................................................................................76
6.1.2.4 數值例................................................................................................78
6.2. 組合近似法在動態結構再分析之應用.........................................................................80
6.2.1結構動態分析.............................................................................................80
6.2.2 修正結構動態再分析......................................................................................80
6.2.3 特徵值問題之逆疊代(Inverse Iteration)解法...............................................................81
6.2.4 組合近似法之特徵問題再分析.................................................................................81
6.2.5 基向量之確認............................................................................................82
6.2.6改良振態模式.............................................................................................83
6.2.7基向量之Gram-Schmidt 正交化..............................................................................84
6.2.8基向量之飄移(shift)......................................................................................85
6.2.9 具飄移逆疊代之組合近似法................................................................................86
6.2.10 數值例.................................................................................................87
6.3以組合近似法求解動態結構靈敏度.............................................................................91
6.3.1. 靜態結構之靈敏度.......................................................................................92
6.3.2 組合近似法計算修正位移導數.............................................................................93
6.3.2.1 計算靜態修正結構位移..................................................................................93
6.3.2.2 靜態修正結構位移一次導數..............................................................................94
6.3.2.3 靜態修正結構位移之二次導數............................................................................96
6.3.3. 動態結構之靈敏度.......................................................................................96
6.3.4 數值例..................................................................................................98
6.4 結論....................................................................................................100
第七章 結論与展望..............................................................................................103
7.l 結論.....................................................................................................103
7.2未來研究方向..............................................................................................105
參考資料........................................................................................................107
附錄............................................................................................................117
參考文獻 1. B.P. Wang, Eigenvalue Reanalysis of Locally Modified Structures Using A Generalized Rayleigh’s Method. AIAA Journal, 1986, 24(6) ,983-990.
2. A.K. Noor, S.L. Whiteeorth, Reanalysis Procedure for Large Structural System. International Journal for Numerical Methods in Engineering, 1988, 26, 1729-1748.
3. C.R. Zhou, Y.M. Bao, Structural Modification and Vibration Reanalysis. Computer Methods in Applied Mechanics and Engineering, 1990, 83(2), 99-108.
4. B.P. Wang, S.P. Caldwell, C.M. Smith, Improved Eigensolution Reanalysis Procedures in Structural Dynamics. Finite Elements in Analysis and Design, 1992, 11(3), 191-200.
5. Z.S. Liu, S.H. Chen, Reanalysis of Static Response and Its Design Sensitivity of Local Modified Structures. Communications in Numerical Methods in Engineering, 1992, 8(11), 797-800.
6. S.H.Chen, D.T. Song, A.J.Ma, Eigensolution Reanalysis of Modified Structures Using Perturbations and Rayleigh Quotients. Communications in Numerical Methods in Engineering, 1994, 10(2), 111-119.
7. M.M. Segura, J.T. Celigueta, A New Dynamic Reanalysis Technique Based on Modal Synthesis. Computers and Structures, 1995, 56(4), 523-527.
8. J. Tang, W.L. Wang, Structural Reanalysis in Configuration Space by Perturbation Approach: A Real Mode Method. Computers and Structures, 1996, 58(4), 730-746.
9. U. Kirsch, S. Liu, Structural Reanalysis for General Layout Modifications. AIAA Journal, 1997, 35(2), 382-388.
10. U. Kirsch, F. Moses, An Improved Reanalysis Method for Grillage Type Structures. Computers and Structures, 1998, 68(1), 79-88.
11. U. Kirsch, Efficient Accurate Reanalysis for Structural Optimization. AIAA Journal, 1999, 37(12), 1663-1669.
12. S.H. Chen, X.W. Yang, H.D. Lian, Comparison of Several Eigenvalue Reanalysis Methods for Modified Structures. Structural and Multidisciplinary Optimization, 2000, 20(4), 253-259.
13. R. Levy, U. Kirsch, S. Liu, Reanalysis of Trusses Using Modified Initial Designs. Structural and Multidisciplinary Optimization, 2000, 19(2), 105-112.
14. S.H. Chen, X.W. Yang, Static Displacement Reanalysis of Structures Using Perturbation and Pade’ Approximation. Communications in Numerical Methods in Engineering, 2000, 16(2), 75-82.
15. U. Kirsch, Implementation of Combined Approximation in Structural
Optimization. Computers and Structures, 2000, 78(3), 449-457.
16. M.A. Ahgun, J.H. Garcelon, R.T. Haftka, Fast Exact Linear and Nonlinear Structural Reanalysis and the Sherman-Morrison- Woodbury Formulas. International Journal for Numerical Methods in Engineering, 2001, 50(7), 1587-1606.
17. U. Kirsch, P.Y. Papalambros, Accurate Displacement Derivatives for Structural Optimization Using Approximate Reanalysis. Computer Methods in Applied Mechanics and Engineering, 2001, 190(31), 3945-3956.
18. U. Kirsch, P.Y. Papalambros, Exact and Accurate Solutions in the Approximate Reanalysis of Structures. AIAA Journal, 2001, 39(11), 2198-2205.
19. U. Kirsch, M. Kocvara, J. Zowe, Accurate Reanalysis of Structures by A Preconditioned Conjugate Gradient Method. International Journal for Numerical Methods in Engineering, 2002, 15(2), 233-251.
20. U. Kirsch, Design-Oriented Analysis of Structures- A Unified Approach. ASCE Journal of Engineering Mechanics. 2003, 129(3), 264-272.
21. U. Kirsch, Approximate Vibration Reanalysis of Structures. AIAA Journal, 2003, 41(3), 504-511.
22. U. Kirsch, A Unified Reanalysis Approach for Structural Analysis, Design, and Optimization. Structural and Multidisciplinary Optimization, 2003, 25(2), 67-85.
23. U. Kirsch, M. Bogomolni, Procedure for Approximate Eigenproblem Reanalysis of Structures. International Journal for Numerical Methods in Engineering, 2004, 60, 1969-1986.
24. U. Kirsch, Reduced Basis Approximate Interactive Design of Large Structures. Computing Systems in Engineering, 1991, 2, 67-74.
25. U. Kirsch, G.I.N. Rozvany, Alternative Formulations of Structural Optimization. Structural and Multidisciplinary Optimization, 1994, 7(1), 32-41.
26. U. Kirsch, Effective Sensitivity Analysis for Structural Optimization. Computer Methods in Applied Mechanics and Engineering, 1994, 117(1), 143-156.
27. A.K. Noor, Recent Advances and Applications of Reduction Methods. Applied Mechanics Reviews, 1994, 47(5), 125-146.
28. U. Kirsch, Combined Approximations- A General Approach for Structural Optimization. Structural and Multidisciplinary Optimization, 2000, 20(2), 97-106.
29. U. Kirsch, M. Bogomolni, F.V. Keulen, Efficient Finite Difference Design Sensitivities. AIAA Journal, 2005, 43(2), 399-405.
30. J.W.S. Rayleigh, The Theory of Sound, 2nd edition. Vol.1, Macmilan, London, 1894; reprinted by Dover, New York, 1945.
31. J. Sherman, W.J. Morrison, Adjustment of an Inverse Matrix Corresponding to Changes in the Elements of a Given Column or a Given Row of the Original Matrix. Annals of Mathematical Statistics, 1949, 20, 621.
32. M.Woodbury, Inverting Modified Matrices. Memorandum Report 42.
Statistical Research Group, Princeton Unversity, Princeton, NJ, 1950.
33. A.S. Householder, A Survey of Some Closed Form Methods for Inverting Matrices. Journal of the Society for Industrial and Applied Mathematics, 1957, 5(3), 155-169.
34. U. Kirsch, Structural Optimizations, Fundamental and Application. Heidelberg, Springer, 1993.
35. J.F.M. Barthelemy, R.T. Haftka, Approximation Concepts for Optimum Structural Design- A Review. Structural and Multidisciplinary Optimization, 1993, 5(3), 129-144.
36. R.L. Fox, H. Miura, An Approximate Analysis Technique for Design
Calculations. AIAA Journal, 1971, 9, 177-179.
37. B.P. Wang, W.D. Pilkey, Eigenvalue Reanalysis of Locally Modified Structures Using a Generalized Rayleigh’s Method. AIAA Journal, 1986, 24(6), 983-990.
38. U. Kirsch, Approximate Structural Reanalysis Based on Series Expansion. Computer Methods in Applied Mechanics and Engineering, 1981, 26, 205-223.
39. C. Lanczos, Trigonometric Interpolation of Empirical and Analytical Functions. Journal of Mathematical Physics, 1938, 17, 123-199.
40. C. Lanczos, Applied Analysis. Prentice-Hall, 1956.
41. L. Fox, I.B. Parker, Chebyshev Polynominal in Numerical Analysis. Oxford University, Press, 1968.
42. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin, Germany. 1988.
43. B. Fornberg, A Practical Guide to Pseudospectral Methods. Cambridge University, Press, New York, NY. 1996.
44. D. Funaro, Polynominal Approximation of Differential Equations. Springer-Verlag, Berlin, Germany. 1992.
45. D. Gottlieb, M.Y. Hussaini, S.A. Orszag, Theory and Applications of Spectral Methods. 1984.
46. F. Stenger, Numerical Methods Based on Sinc and Analytic Functions. Springer-Verlag, New York, NY. 1993.
47. E. Tadmor, The Exponential Accuracy of Fourier and Chebyshev Differencing Methods. SIAM Journal on Numerical Analysis, 1986, 23(1), 1-10.
48. Z. Battles, Numerical Linear Algebra for Continuous Functions. DPhil Thesis, Oxford University Computing Laboratory, 2006.
49. Z. Battles, L.N. Trefethen, An Extension of Matlab to Continuous Functions and Operators. SIAM Journal on Scientific Computing, 2004, 25, 1743-1770.
50. L.N. Trefethen, Computing Numerically with Functions Instead of Numbers. Mathematics in Computer Science, 2007, 1, 9-19.
51. B.D. Welfert, Generation of Pseudospectral Differentiation Matrices. SIAM Journal on Numerical Analysis, 1997, 34(4), 1640-1657.
52. W.S. Don, A. Solomonoff, Accuracy and Speed in Computing the Chebyshev Collocation Derivative. SIAM Journal on Scientific Computing, 1995, 16(6), 1253-1268.
53. B. Costa, W.S. Don, On the computation of high order pseudospectral
derivatives, Applied Numerical Mathematics. 2000, 33, 151-159.
54. A.Y.T. Leung, W.E. Zhou, C.W. Lim, R.K.K. Yuen, and U. Lee, Dynamic stiffness for piecewise non-uniform Timoshenko column by power series-part I: conservative axial force. International Journal for Numerical Methods in Engineering, 2001, 51, 505-529.
55. A.Y.T. Leung, W.E. Zhou, Dynamic stiffness analysis of non-uniform Timoshenko beams. Journal of Sound and Vibration, 1995, 181, 447-456.
56. S.Y. Lee, S.M. Lin, Exact vibration solutions for non-uniform Timoshenko beams with attachments. AIAA Journal , 1992, 30, 2930-2934.
57. R.J. Pomazal, The Effect of Local Modification on the Eigenvalues and Eigenvectors of Damped Linear Systems. Ph.D. Dissertation, Michigan Technology University, Michigan, 1969.
58. R.J. Pomazal, Local Modification of Damped Linear Systems. AIAA Journal , 1971, 9, 2216-2221.
59. Hallquist J.O.. An efficient Method for Determining the Effects of Mass Modifications in Damped Linear Systems. Journal of Sound and Vibration, 1974, 44, 449-459.
60. C.M. Chou, Structural Dynamics Modification of 3D Beam Elements using a Local Eigenvalue Modification Procedure. Ph.D. Dissertation, University of Lowell, Massachusetts, 1984
61. N. Aronszain, A. Weinstein, On the Unified Theory of Eigenvalues of Plates and Membranes. American Journal of Mathematics. 1945, 64, 623-645.
62. C. Beattie, D.W. Fox, Schur Complements and Weinstein-Aronszajn Theory for Modified Matrix Eigenvalue Problem. Linear Algebra and its Applications, 1988, 108 , 37-61.
63. P. Arbenz , G.H. Golub, On the Spectral Decomposition of the Hermitian Matrices Modified by Low Rank Perturbations with Applications. SIAM Journal on Matrix Analysis and Applications, 1988, 9, 40-58.
64. J.Y. Liao, C.C Tse, An Algebra Approach for the Modal Analysis of Synthesized Structures. Mechanical System and Signal Processing, 1993, 7, 89-104.
65. P. Avitabile, Twenty Years of Structural Dynamic Modification – a review. Sound and Vibration, 2003, 37, 14-27.
66. P. Lancaster, Model-updating for Self-adjoint Quadratic Eigenvalue Problem, Linear Algebra and its Applications, 2008, 428, 2778-2790.
67. Johnson Charles R., Furtado Susana. A Generalization of Sylvester’s Law of Inertia. Linear Algebra and its Application, 2001, 338, 287-290.
68. W.H. Wittrick, F.W. Williams, A General Algorithm for Computing Natural Frequencies of Elastic Structures. Quarterly Journal of Mechanics and Applied Mathematics, 1971, 24, 263-284.
69. A. Simpson, A Newtonian Procedure for the Solution of Ex=λAx. Journal of Sound and Vibration, 1982, 82, 161-170.
70. N.S. Sehmi, Large Order Structural Eigenanalysis Techniques. West Sussex, Ellis Horwood Limited, 1989.
71. W.F. Trench, Numerical Solution of Eigenvalue Problem for Hermitian Toeplitz Matrices. SIAM Journal on Matrix Analysis and Applications, 10, 1989, 135-146.
72. R.P. Brent, Algorithms for Minimization Without Derivatives. New Jersey, Prentice-Hall, 1973.
73. Turkkila Timo. Use of Decomposition in Solution of Eigenproblem. 15th Nordic Seminar on Computational Mechanics, 2002.
74. J.Y. Liao, C.C. Tse, A Comparison of Error Bounds for Eigenvalues in Structural Modification Problem. Mechanical System and Signal Processing, 1993, 7, 273-279.
75. Rayleigh J.W.S.. The Theory of Sound. Vol.1 and 2, New York, Dover, 1945.
76. W.B. Bickford, An Improved Computational Technique for Perturbations of Generalized Symmetric Linear Algebraic Eigenvalue Problem. International Journal for Numerical Methods in Engineering, 1987, 24, 529-541.
77. S.H. Chen, D.T. Song, A.J. Ma, Eigensolution Reanalysis of Modified Structures Using Perturbations and Rayleigh Quotients. Communication in Numerical Methods in Engineering, 1994, 10, 111-119.
78. S.H. Chen, Matrix Perturbation Theory in Structural Dynamics. Beijing: International Academic Publisher.
79. B. Cochelin, N. Damil, M. Potier-Ferry, Asymptotic-numerical Methods and Pade’ Approximants for Non-linear Elastic Structures. International Journal for Numerical Methods in Engineering, 1994, 37, 1187-1213.
80. B.S. Wu, S.X. Piao, Applications of Pade’ Approximation to Mechanics. Mechanics & Practice, 1996, 18, 27-29.
81. R.I. Fox, H. Miura, An Approximate Analysis Technique for Design Calculations. AIAA Journal, 1972, 9(1), 177-179.
82. A.K. Noor, H.E. Lowder, Approximate Techniques of Structural Reanalysis. Computers and Structures, 1974, 4(4), 801-812.
83. A.K. Noor, H.E. Lowder, Approximate Reanalysis Techniques with Substructuring. ASCE Journal of the Structural Division, 1975, 101(8), 1687-1698.
84. A.K. Noor, H.E. Lowder, Structural Reanalysis via A Mixed Method. Computers and Structures, 1975, 5(1), 9-12.
85. A.K. Noor, Recent Advances in Reduction Methods for Nonlinear Problems. Computers and Structures, 1981, 13, 31-44.
86. A.K. Noor, On Making Nonlinear Problems Small. Computer Methods in Applied Mechanics and Engineering, 1982, 34, 955-985.
87. A.K. Noor, Recent Advances and Applications of Reduction Methods. Applied Mechanics Review, 1994, 47(5), 125-146.
88. U. Kirsch, Effective Reanalysis of Structures, Concept and Implementation. Technical Report, Technio, Department of Civil Engineering, Haifa, Israel, January. 1996.
89. R. Freymann, Advanced Numerical and Experimental Methods in the Field of Vehicle Structural-Acoustics. PhD Thesis, Habilitationsschrift, Technische Uiversitat Munchen, 2000.
90. Y. Saad, H.A. Van Der Vorst, Iterative Solution of Linear Systems in The 20th Century. Journal of Computational and Applied Mathematics, 2000, 123(1-2), 1-33.
91. U. Kirsch, M. Bogomolni, Error Evaluation in Approximate Reanalysis of Structure. Structural and Multidisciplinary Optimization, 2004, 28, 77-86.
指導教授 洪勵吾(Lih-wu Hourng) 審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明