博碩士論文 943403043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.119.123.252
姓名 陳譽升(Yu-Sheng Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎳微柱電鍍受鍍浴黏度與電阻率之影響
(Effect of bath viscosity and electrical resistivity on the morphology of nickel micro pillar from localized electrochemical deposition)
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要藉微陽極導引電鍍法,分別在氯化鎳 (含0.35 M~1 M 鎳離子),不同液溫(323 K~353 K)的水溶液鍍浴及膽鹼基離子液體(由氯化膽鹼及乙二醇所混合調配而成) 鍍浴兩種系統中製備鎳金屬微柱,並以活化能觀點來探討此兩種鍍浴的表現差異。
接著,在定電位-1.00 V 的微電鍍下,所測得的電流-時間關係,搭配成核理論方程式,可用來檢討、比對兩種鍍浴系統之析鍍物成核與成長行為,探討溶液特性對微陽極導引電鍍過程中鎳金屬微柱表面形貌之影響。以定電位微電鍍法所量測之電流-時間曲線顯示: 在水溶液鍍浴系統的成核行為屬於瞬時成核模式;而在膽鹼基離子液體鍍浴中的成核行為則屬於漸進成核模式。
在兩種鍍浴系統所呈現之不同成核方式與鍍浴之電阻率及黏度有密切關係。溶液電阻率、黏度會隨浴溫提高而下降,也會隨浴中氯化鎳濃度而表現出不同特性。依據在兩種鍍浴中溶液電阻率、黏度及總活化能(ESUM=Eρ+Eη)等的估計發現: 膽鹼基離子鍍浴之溶液電阻率及黏度活化能均遠高於水溶液之鍍浴系統。不論在任何鍍浴中,溶液之黏度活化能均高於電阻率活化能,此結果暗示: 溶液黏度對鎳金屬微柱微電鍍行為的影響遠大於溶液電阻率。膽鹼基離子液體的高黏度及高電阻率,升高了微柱成長的能量障礙,導致鎳金屬析鍍物沈積行為的不連續,進而使得微柱呈現瘤狀堆積的形貌。
摘要(英) Localized electrochemical deposition (LECD) was conducted by microanode-guided electroplating (MAGE) in two different bath systems containing the same concentration of nickel chloride (in the range from 0.35 M to 1.00 M nickel ions) to investigate the bath effect on the surface morphology of the nickel micro pillars. One of the baths is the ordinary aqueous solution and the other is an ionic liquid prepared by mixing choline chloride with ethylene glycol. The temperature of the baths was controlled in the range from 323 K to 353 K. Different electrochemical behavior arisen from different baths could be realized on the viewpoint of activation energy in the nickel electrochemical deposition. A plot of current density versus time for LECD performed at 1.0 V was helpful to correlated to theoretical background to illustrate their different behaviors. The current measured in the aqueous bath reveals a typical profile correlated to instantaneous nucleation; however, the current measured in the ionic liquid system depicts a characteristic behavior of progressive nucleation.
Electrochemical deposition determined by different nucleation modes in different baths could be realized on the experimental parameters (such as electrical resistivity and viscosity) characterized by the baths. Both electrical resistivity and viscosity decreases with increasing bath temperatures. The electrochemical behavior depended upon the concentration of NiCl2 in the baths. The electrical resistivity and viscosity were determined in the systems, The activation energy ascribed to electrical resistivity (Eρ) and viscosity (Eη) in different baths could be estimated. In comparison with the magnitude of electrical resistivity, viscosity in the bath and overall activation energy (i.e., Esum = Eρ + Eη) contributed to electrical resistivity and viscosity, we found that they are all higher in the system of ionic liquid bath as compared with the aqueous system. Moreover, activation energy ascribed to viscosity is much higher than that ascribed to electrical resistivity regardless the bath. This fact implies that the activation energy ascribed to viscosity plays more important role than to electrical resistivity. Higher barrier activation energy in the system of ionic liquid bath leads to retard the nucleation. As a result, progressive nucleation dominates the deposition and it grows gradually to nodular form distributed non-uniformly. In contrast, least activation energy ascribed to viscosity plays only a tiny contribution in the aqueous bath, tiny barrier in activation energy leads to instantaneous nucleation. Consequent growth of a film dispersed with tiny crystals results in uniform smooth morphology.
關鍵字(中) ★ 成核
★ 活化能
★ 黏度
★ 電阻率
★ 膽鹼基離子液體
★ 局部電化學沈積
關鍵字(英) ★ Localized electrochemical deposition (LECD)
★ ionic liquid
★ electrical resistivity
★ viscosity
★ activation energy
★ nucleation
論文目次 中文摘要 i
英文摘要 iii
目錄 vi
圖目錄 x
符號表 xvii
一、前言 1
1.1 研究背景 1
1.1.1 局部電化學沈積的發展 1
1.1.2 離子液體的發展 2
1.2 研究動機與目的 2
1.3 論文架構 3
二、文獻回顧與原理學說 6
2.1 微陽極導引電鍍概說 6
2.1.1 微陽極導引電鍍原理 6
2.1.2.2 微電極之特性 7
2.2 微電鍍文獻回顧 8
2.2.1 微電鍍之發展 8
2.2.2 電化學成核理論與發展 15
2.3 離子液體性質概說 19
三、實驗方法 34
3.1 實驗流程圖 34
3.2 鍍液配置 35
3.3 鍍液電阻率與黏度特性量測 36
3.4 電化學特性量測 36
3.4.1 二極式電化學特性曲線量測 37
3.4.2 三極式電化學特性曲線量測 37
3.5 電極製備 38
3.5.1 二極式白金線陽極 38
3.5.2 三極式參考電極與對應電極製備 39
3.5.3 工作電極製備 43
3.6 實驗槽體 44
四、結果與討論 55
4.1 鎳金屬微柱表面SEM形貌觀察 55
4.2 電解液溶液特性 56
4.2.1電解液電阻率特性 56
4.2.2電解液黏度特性 59
4.2.3電解液活化能 63
4.3 三極式電化學曲線量測 67
4.3.1 開路電位量側 67
4.3.2 電流-電位曲線量測 67
4.3.3 極限電流 69
4.4 成核模式鑑定 70
五、結論 94
六、未來展望 97
七、參考文獻 98
八、附錄(以間歇式微陽極導引電鍍法製備金屬銅微柱之機械性質量測) 106
8.1 研究背景與目的 106
8.2 實驗方法 109
8.3 結果與討論 110
8.3.1 金屬銅微柱SEM表面形貌觀察 110
8.3.2 金屬銅微柱之拉伸試驗 111
8.3.3 金屬銅微柱之軸向剖面SEM內部結構觀察 116
8.3.4 金屬銅微柱之破斷面SEM觀察 117
8.4 結論 127
8.5 參考文獻 128
參考文獻 [1] Lubomyr T. Romankiw “Electrodeposition technology theory and practice” IBM T. J. Watson Research Centrt Yorktown Heights, New York, pp. 425-565, 1986.
[2] D. R. Crow, Principles and Applications of Electrochemistry, 4th Edition, 高立圖書代理, 1994.
[3] Eliezer Gileadi, “Electrode Kinetics”, VCH Publishers, Inc.,1993。
[4] R. C. Alkire, T. J. Chen, J. Electrochem. Soc. 129 (1982) 2424.
[5] M. Datta, L. T. Romankiw, D. R. Vigliotti, R. J. van Guffeld, J. Electrochem. Soc. 136 (1989) 2251.
[6] M. Kunieda, R. Katoh, Y. Mori, CIRP Annals, 47 (1998) 161
[7] J.D. Madden, S.R. Lafontaine, I.W. Hunter, IEEE (1995) 77.]
[8] J.D. Madden, I.W. Hunter, J. Microelectromech. Syst. 5 (1996) 24.
[9] R.A. Said, Nanotechnology 14 (2003) 523.
[10] S. H. Yeo, J. H. Choo and K. S. Yip, “Localized electrochemical deposition—the growth behavior of nickel micro-columns”, Proc. SPIE 4174 (2000) 30–9.
[11] S. H. Yeo, J. H. Choo and K. H. Sim, “On the effects of ultrasound vibration on localized electrochemical deposition”, J. Micromech. Microeng.12 (2002) 271–9.
[12] S. H. Yeo and J. H. Choo, “Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition”, J.Micromech. Microeng. 11 (2001) 435–42.
[13] R.A. Said, “Shape Formation of MicrostructuresFabricatedby Localized ElectrochemicalDeposition”, J. Electrochemical Society, Vol.150, No.8, pp. 549-557, 2003.
[14] S. K. Seol et al, “Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition Electrochem. Solid-State Lett. 7–9 (2004) C95–7.
[15] S. K. Seol, A. R. Pyun, Y. Hwu, G. Margaritondo and J. H. Je, “ Localized electrochemical deposition of copper monitored using real-time x-ray microradiography”, Adv. Funct. Mater. 15 (2005) 934–7.
[16] S. K. Seol, J. T. Kim, J. H Je, Y. Hwu and G. Margaritondo, “Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition”, Electrochem. Solid-State Lett. 10 (2007) C44-C46.
[17] A. D. Muller, F. Muller, and M. Hietschold, “Localized Electrochemical Deposition of Metals Using Micropipettes,” Thin Solid Films, 366 (2000) 32-36.
[18] Y. Li, Y. Zheng, G. Yang, and L. Peng, “Localized electrochemical micromachining with gap control, ”Sensors and Actuators A 108 (2003), pp. 144-148.
[19] J. H. Choo and S. H. Yeo, “Enhancement of spatial resolution of microfabricated columns using localized electrochemical deposition”, Proc.SPIE 4236 (2001) 260–71.
[20] J. H. Choo, S. H. Yeo and F. F. Tan, “Flexible tooling for localized electrochemical deposition with wireelectrodischarge grinding”, Micosyst.Technol. 10 (2004) 127–36.
[21] C. S. Lin, C. Y. Lee, J. H. Yang, Y. S. Huang, “Improved Copper Microcolumn Fabricated by Localized Electrochemical Deposition,” Electrochemical and Solid-State Letters, (2005) C125-C129.
[22] C. Y. Lee, C. S. Lin and B. R. Lin, “Localized electrochemical deposition process improvement by using different anodes and deposition directions”, J.Micromech. Microeng. 18 105008 (2008) 8pp.
[23] J. C. Lin, S. B. Jang, D. L. Lee, C. C. Chen, P. C. Yeh, T. K. Chang and J. H. Yang, J. Micromech. Microeng. 15 (2005) 2405–2413
[24] T. K. Chang, J. C. Lin, J. H. Yang, P. C. Yeh, D. L. Lee and S. B. Jiang, J. Micromech. Microeng. 17 (2007) 2336–2343
[25] J. H. Yang, J. C. Lin, T. K. Chang, G. Y. Lai and S. B. Jiang, J. Micromech. Microeng. 18 (2008) 055023
[26] J. C. Lin, T. K. Chang, J. H. Yang, J. H. Jeng, D. L. Lee and S. B. Jiang, J. Micromech. Microeng. 19 (2009) 015030
[27] J.C. Lina, J.H. Yang, T.K. Chang, S.B. Jiang, Electrochimica Acta 54 (2009) 5703–5708
[28] J. C. Lin, T. K. Chang, J. H. Yang, Y. S. Chen, C. L. Chuang, Electrochimica Acta 55 (2010) 1888–1894
[29] T. C. Chen, Y. R. Hwang, J. C. Lin, Y. J. Ciou, Int. J. Electrochem. Sci., 5 (2010) 1810 - 1820
[30] R. Greef, R. Peat, L. M. Peter, D. Pletcher and J. Robinson, “Instrumental Methods in Electrochemistry”, John Wiely & Sons, New York (1985).
[31] D. Pletcher, “ A First Course in Electrode Processes”, The Electrochemical Consultancy, England(1991).
[32] G. Gunawardena, G. Hills, I. Montenegro and B. Scharifker, J. Electroanal. Chem., 138, 225(1982).
[33] P. Allongue and E. Souteyrand, J. Electroanal. Chem., 286, 217(1990).
[34] B. Scharifker and G. Hills, Electrochim. Acta, 28, 879(1983).
[35] G. Delarue, J. Electroanal. Chem., 1, 285(1959).
[36] J. M. Schafir and J. A. Plambeck, Can. J. Chem., 48, 2131(1970).
[37] L. G. Boxall, H. L. Jones and R. A. Osteryoung, J. Electrochem. Soc.: Electrochemical Science and technology, 120, 223(1973).
[38] I-W. Sun, A. G. Edwards and G. Mamantov, J. Electrochem. Soc., 140, 2733(1933).
[39] G. R. Stafford, J. Electrochem. Soc., 141, 945(1994).
[40] G. Mamantov, G.-S. Chen, H. Xiao, Y. Yang and E.Hondrogiannis, J.Electrochem. Soc., 142, 1758(1995).
[41] D. M. Gruen and R. L. Mcbth, Pure Appl. Chem., 6 23, (1963)
[42] J. Phillips and R. A. Osteryoung, J. Electrochem. Soc., 124, 1465(1977)
[43] M. J. Earle and K. R. Seddon, Pure and Applied Chemistry, 72, 1391(2000)
[44] P. Walden, Bull. Acad. Imper. Sci, pp.1800, 1994.
[45] A. E. Visser. R. P. Swatloski, W. M. Reichert, S. T. Griffin. R.D. Rogers, “Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids”, Industrial and Engineering Chemistry Research, 39, pp.3596-3604, 2000.
[46] F. H. Hurley, J. P. Wier, J. Electrochem. Soc., 98, 203, 1951.
[47] J. T. Yoke, J. F. Weiss and G. Tollin, Inorg. Chem., vol. 2, pp.1210, 1963。
[48] J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Inorg. Chem., 21, pp.1263, 1982.
[49] E. I. Cooper, E. J. M. O’ Sullivan, ” Proceeding of the eighth International Symposium of Molten Salts, Physical and High Temperature Materials Division Proceeding”, J. Electrochem. Soc, pp. 386, 1992.
[50] Andrew P. Abbott, Glen Capper, David L. Davies, Raymond K. Rasheed and Vasuki Tambyrajah, “Novel Solvent Properties Of Choline Chloride/Urea Mixtures”, CHEM. COMMUN. , pp70-71, 2003.
[51] Andrew P. Abbott, John C. Barron, Karl S. Ryder, and David Wilson, “Eutectic-Based Ionic Liquids with Metal-Containing Anions and Cations”, Chem. Eur. J. , 13, pp. 6495-6501, 2007.
[52] Andrew P. Abbott, Glen Capper, Katy J. McKenzie, Karl S. Ryder, “Electrodeposition of Zinc–Tin Alloys from Deep Eutectic Solvents based on Choline Chloride”, Journal of Electroanalytical Chemistry, Vol. 599, pp. 288-294, 2007.
[53] W. Plieth, Electrochemistry for Materials Science, Amsterdam, Boston: Elsevier, (2008), pp.169–193.
[54] M. J. Deng, I. W. Sun, P. Y. Chen, J. K. Chang, W. T. Tsai, Electrochim. Acta 53 (2008) 5812.
[55] E. Cherif, M. Bouanz, Fluid Phase Equilibria 251 (2007) 71.
[56] E. Cherif, M. Bouanz, Fluid Phase Equilibria 251 (2007) 71.
[57] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pregramon Press, Oxford, 1966
[58] S. P. Gou, I. W. Sun, Electrochimica Acta 53 (2008) 2538–2544
[59] Alexander Milchev, Dimiter Stoychev, Vesselin Lazarov,Achilleas Papoutsis, Georgios Kokkinidis, Journal of Crystal Growth 226 (2001) 138–147
[60] Theodora Zapryanova, Antoaneta Hrussanova, Alexander Milchev, Journal of Electroanalytical Chemistry 600 (2007) 311–317
[61] Jakub Adam Koza, Margitta Uhlemann, Annett Gebert, Ludwig Schultz, Electrochimica Acta 53 (2008) 7972–7980
[62] Z. Petrovic, M. Metikos-Hukovic, Z. Grubac, S. Omanovic, Thin Solid Films 513 (2006) 193–200
指導教授 林景崎(Jing-Chie Lin) 審核日期 2011-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明