博碩士論文 963306006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.138.134.77
姓名 涂有為(You-wei Tu)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 固體停留時間對高溫厭氧消化甲烷產出影響之研究
(Effect of solid retention time on methane production with thermophilic anaerobic digestion)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以稀釋豬糞的醱酵探討固體停留時間和有機負荷率對甲烷產出的影響,使用稀釋豬糞(亦即,4%揮發性固體含量)為基質,以2公升控溫在55℃的半連續式混合醱酵槽執行本實驗;固體停留時間定義為反應槽體積內固體量維持在每日進出料量,從10天到4天每週期2天遞減,而有機負荷率從18.21 g-VS/L/d到45.54 g-VS/L/d遞增。本研究實驗結果顯示:甲烷產生率隨著固體停留時間的增加而降低,然而,在實驗範圍內卻是隨著有機負荷率的增加而增加;在固體停留時間4天也就是有機負率在45.54 g-VS/L/d中,有最大的甲烷產生量1037 mL-CH4 /L/d,另外,發現揮發性脂肪酸(VFAs)的濃度維持在約1000mg/l。本研究結果可提供生質能源產業設計和甲烷醱酵操作之參考。
摘要(英) This study investigated the effects of solid retention time (SRT) and organic loading rate (OLR) on the fermentation of diluted pig manure (DPM) for methane production. The fermentation was carried out in a 2-liter semi-continuously mixed fermentator controlled at 55℃, using DPM (i.e., 4% in volatile solid content) as substrate. The solid retention time, defined as the ratio of solid volume in the reactor to the volume of draw-and-feet daily , was varied in this study from 10days to 4days, with a 2- days decrement, and the OLR varied accordingly from 18.21 to 45.54 g-VS/L/d. The results indicate that the methane production rate (ml/L/d) decreased with increasing SRT, however, with increasing OLR within the tested ranges. The maximum methane production rate (i.e., 1037 ml/L/d) was found at an OLR of 45.54 gVS/L/d and a SRT of 4 days in this study. On the other hand, the volatile fatty acids (VFAs) was found the concentration of approximately 1000 mg/l. The results of this study may contribute to the bioenergy industry for the design and operation of a methane fermentator.
關鍵字(中) ★ 固體停留時間
★ 有機負荷
★ 稀釋豬糞
★ 甲烷醱酵
關鍵字(英) ★ solid retention time
★ organic loading rate
★ diluted pig manure
★ methane fermentation
論文目次 摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vi
表目錄 vii
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 豬糞產生沼氣再利用概述 3
2.2 猪糞尿廢水污泥之處理概況 3
2.3 中溫及高溫厭氧消化之比較 4
2.4 厭氧消化原理 7
2.5 厭氧消化型式 14
2.6 豬糞厭氧消化沼氣產出的影響因子 15
2.7 有機廢棄物厭氧共消化 20
2.8 生質氣體組成成份 22
2.9 生質能 24
第三章 材料與方法 27
3.1 實驗材料 27
3.1.1 材料 27
3.1.2 TS、VS 計算 28
3.2 實驗步驟和操作 28
3.2.1 實驗步驟 28
3.2.2 研究流程 30
3.2.3 進出料操作程序 33
3.2.4 氣體層析儀---火焰點火偵測器操作程序(GC—FID) 33
3.2.5 氣體層析儀---熱導度偵測器操作程序(GC—TCD) 35
3.3分析方法 37
3.3.1甲烷分析方法 37
3.3.2 揮發性有機酸分析方法 38
3.3.3化學需氧量分析方法(快速分析) 39
3.4 檢測設備 40
第四章 結果與討論 43
4.1不同固體停留時間對實驗的影響 43
4.2 固體停留時間對生質氣體甲烷含量的影響 44
4.3固體停留時間對溶解性化學需氧量和揮發性固體物的影響 45
4.4固體停留時間對甲烷產生量和比甲烷產出率的影響 46
4.5固體停留時間對揮發性脂肪酸和pH值的影響 47
第五章 結論與建議 49
5.1 結論 49
5.2 建議 50
參考文獻 51
附錄 58
參考文獻 陳玫佐(2010)生質沼氣發酵特性之研究,碩士論文,國立中央大學,環境工程
研究所,3-20頁。
黃昱翔(2010)有機廢棄物高溫固態厭氧醱酵產氫特性之研究,碩士論文,國立
中央大學,環境工程研究所,第3-15頁。
經濟部能源局,能源政策與能源供需情勢,(2009)1月9日。
卓威廷(2009)稻草及有機廢棄物高溫厭氧共消化之研究,碩士論文,國立屏東
科技大學,環境工程與科學系研究所。
陳文卿. (2009)廚餘、水肥、養豬廢水及生活廢水產生之污泥集中處理及生質
能源再利用行性評估計畫. 期末報告。.
王曉怡(2008)厭氧生物降解龍鬚菜產甲烷程序最佳化之探討,碩士論文,東海
大學, 環境科學與工程研究所,第4-29頁。
郭文健(2007)台南縣廚餘及有機廢棄物厭氧醱酵模場試驗計畫期末報告。台
南縣環境保護局,第105頁。
賴玟融(2007)處理有機廢棄物的移動式高溫厭氧醱酵系統之研發。國立屏東
科技大學環境工程與科學研究所論文。
范文軒(2007)有機廢棄物與豬糞尿污泥高溫厭氧共消化之研究,碩士論文,國
立屏東科技大學,環境工程與科學系研究所。
賴玟融(2007)處理有機廢棄物的移動式高溫厭氧醱酵系統之研發,碩士論文,
國立屏東科技大學,環境工程與科學系研究所,第3-25頁。
王創正 (2006),「廢棄有機污泥以連續批次厭氧消化產氫及甲烷之研究」,長榮
大學職業安全與衛生學系,碩士論文。
吳民貴(2006)高雄縣大寮鄉豬糞尿生質能源集中式開發之研究,碩士論文,輔
英科技大學,環境工程與科學研究所。
陳建翰(2006)造紙廢水中嗜熱厭氧纖維素降解菌群解構分析及嗜熱甲烷菌之分
離與 鑑定。東海大學環境科學與工程研究所碩士論文。
曾啟峯(2005)薄膜生物反應器在高溫厭氧醱酵程序之應用。國立屏東科技大
學環境工程與科學研究所論文。
呂秀月(2004)有機廢棄物高溫厭氧消化副產物之資源化利用。國立屏東科技
大學環境工程與科學研究所論文。
吳耿東 (2004),「再生能源-生質能源」,第38頁。
楊易霖(2003)有機廢棄物厭氧消化―前處理及溫度之引影響。國立屏東科技大
學環境工程與科學研究所碩士論文。
邱素芳(2003)以高溫厭氧共消化有機廢棄物之研究,碩士論文,國立屏東科技
大學,環境工程與科學系研究所。
鄭凱尹(2001)高溫厭氧消化廚餘之研究。國立屏東科技大學環境工程與科學研
究所碩士論文。
郭猛德,林晉卿及郭春芳(2000)豬糞尿污泥之處理與利用,行政院農業委員
會畜產試驗所畜產研究季刊,33(4):第397-408。
郭猛德,林晉卿,郭春芳(2000)「豬糞尿污泥之處理與利用」,行政院農業委員
會畜產試驗所畜產研究季刊,第33卷,第4期,第397-408頁。
郭猛德,林晉卿,黃山內,廖錦聰(1999)「養猪廢水污泥之資源化研究」,第二
十四屆廢水處理技術研討會。
郭猛德(1998)「豬糞尿廢水污泥處理與資源化利用」,台灣農業,第34期,第
37-43頁。
工業污染防治技術服務團(1993)厭氧處理新技術,經濟部工業局。
郭猛德(1997)。懸浮固定生物膜接觸厭氣槽處理 豬糞尿廢水之研究。 畜產研
究30(1):第4-54頁。
石家興(1991)「高溫厭氧(沼氣)發酵之多重優點」,生物產業,第193-196頁。
胡苔莉,方靜文譯(1990)(原著Stephen H. Zinder,Americian Society for
microbiology News,Vol 50,No. 7,pp. 294-298)厭氣微生物轉變有機廢棄
物成甲烷之近展。經濟部 工業局,第97-105頁。
陳文卿,林吉成,蕭碧蓮,陳榮耀(1990)「利用高溫厭氧發酵作豬場廢污之完
全處理」,第15屆廢水處理技術研討會,第59-76頁。
郭猛德(1989)。一貫式豬糞尿處理之規劃與管理。豬場廢水管理研討會 。台
灣省養豬科學研究所,第152-164頁。
行政院環境保護署網站資料,http://www.epa.gov.tw。
Angelidaki, I., Chen, X., Cui, J., Kaparaju, P., and Ellegaard, L. (2006) Thermophilic
anaerobic digestion of source-sorted organic fraction of household municipal solid waste
Angelidaki, I. and Ahing, B. K., 1997, “Co-digestion of olive mill wastewaters with manure, household waste or sewage sludge," Biodegradation, Vol. 8, pp. 221-226.
Angelidaki, I., Ahing, B. K., Deng, H. and Schmidt, J. E., 2002, “Anaerobic digestion of olive mill effluents together with swine manure in USAB reactors," Water Science Technology, Vol. 45, pp. 213-218.
Alvarez J.A, Otero L, Lema J.M. A methodology for optimising feed composition for
anaerobic co-digestion of agro-industrial wastes. Bioresource Technology 2010; 101:
1153–1158.
Antonopoulou, G., Gavala, H. N., Skiadas, L. V., Angelopoulos, K. and Lyberatos, G. (2008)
Blofuels generation from sweet sorghum: Fermentative hydrogen production and
anaerobic digestion of the remaining biomass. Bioresource Technology 99(1): 110-119.
APHA, 2005. Standard methods for the examination of water and wastewater, 25th ed.
American Public Health Association
Appels L, Baeyens J, Degre`ve J, Dewil R. Principles and potential of the anaerobic
digestion of waste-activated sludge. Progress in Energy and Combustion Science 2008;
34: 755–781.
Bougrier, C., Delgenes, J.P., and Carrere, H. (2007) Impacts of thermal pre-treatments on
the semi-continuous anaerobic digestion of waste activated sludge. Biochemical
Engineering Journal 34:20-27.
Bouskova, A., Dohányos, M., Schmidt, J. E., and Angelidaki, I. (2005) Strategies for
changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR
reactors treating sewage sludge. Water Research 39(8):1481-1488.
Bouallagui, H., Haouari, O., Cheikh, B. R., Hamdi, M., Touhami, Y. and Marouani, L.,
2004,“Effect of temperature on the performance of an anaerobic tubular reactor treating
fruitand vegetable waste,” Process Biochemical, Vol. 39, pp. 2143-2148.
Boubaker, F. and Ridha, B. C., 2007, “Anaerobic co-digestion of olive mill wastewater with
olive mill solid waste in a tubular digester at a mesophilic temperature,” Bioresource
Technology, Vol. 98, pp. 769-774.
Bouskova, A., Dohanyos, M., Schmidt, J. E. and Angelidaki, I., 2005, “Strategies for
changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR
reactors treating sewage sludge,” Water Research, Vol. 39, pp. 1481-1488.
Callaghan, F. J., D. A. J. Wase, et al. (1999). "Co-digestion of waste organic solids: batch
studies." Bioresource Technology 67(2): 117-122.
Callaghan, F. J., Wase, D. A. J., Thayanithy, K. and Forster, C. F., 2002, “Continuous- co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure," Biomass and Bioenergy, Vol. 27, pp. 71-77.
Cavinato C, Fatone F, Bolzonella D, Pavan P. Thermophilic anaerobic co-digestion of cattle
manure with agro-wastes and energy crops: Comparison of pilot and full scale
experiences. Bioresource Technology 2010; 101: 545–550.
Chen, C. C., Lin, C. Y. and Chang, J. S. (2001). Kinetics of hydrogen production with
continuous anaerobic cultures utilizing sucrose as the limiting substrate. Applied
Microbiology and Biotechnology 57(1-2): 56-64.
Chowdhury, N., Lalman, J. A., Seth, R. and Ndegwa, P. (2007). Biohydrogen production by
mesophilic anaerobic fermentation of glucose in the presence of linoleic acid. Journal of
Environmental Engineering-Asce 133(12): 1145-1152.
Coˆ te’ C, Masse’ D. I, Quessy S. Reduction of indicator and pathogenic microorganisms by
psychrophilic anaerobic digestion in swine slurries, Bioresource Technology 2006;
97: 686–691.
Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R.-A. and Steyer, J.-P. (2006). Life-cycle
assessment of microalgae culture coupled to biogas production. Bioresource Technology
In Press, Corrected Proof.
Comino E, Rosso M, Riggio V. Development of a pilot scale anaerobic digester for biogas
production from cow manure and whey mix. Bioresource Technology 2009; 100:
5072–5078.
Comino E, Rosso M, Riggio Vincenzo. Investigation of increasing organic loading rate in
the co-digestion of energy crops and cow manure mix. Bioresource Technology 2010;
101: 3013–3019.
Corral M. M, Samani Z, Hanson A, Smith G, Funk P, Yu H, Longworth J. Anaerobic
digestion of municipal solid waste and agricultural waste and the effect of co-digestion
with dairy cow manure. Bioresource Technology 2008; 99: 8288–8293.
Creamer K.S, Chen Y, Williams C.M, Cheng J.J. Stable thermophilic anaerobic digestion of
dissolved air flotation (DAF) sludge by co-digestion with swine manure.
Bioresource Technology 2010; 101: 3020–3024.
Demeyer, D. I. and Hendrickx, H. K. (1967). The effect of C18 unsaturated fatty acids on
methane production in vitro by mixed rumen bacteria. Biochim. Biochim. Biophys. 137:
484-497.
Feng C, Shimada S, Zhang Z, Maekawa T. A pilot plant two-phase anaerobic digestion
system for bioenergy recovery from swine wastes and garbage. Waste Management
2008; 28: 1827–1834.
Fezzani B, Cheikh R. B. Two-phase anaerobic co-digestion of olive mill wastes in
semi-continuous digesters at mesophilic temperature. Bioresource Technology 2010;
101: 1628–1634.
Gonzalez L. M, Colturato L.F, Font X, Vicent T. Anaerobic co-digestion of the organic
fraction of municipal solid waste with FOG waste from a sewage treatment plant:
Recovering a wasted methane potential and enhancing the biogas yield.Waste
Management 2010; 30: 1854–1859.
Gujer, W. and Zehnder, A. J. B. (1983). Conversion processes in anaerobic bacteria. War.
Sci.Tech 15: 127-167.
Hanaki, K., Matsuo, T. and Nagase, M. (1981). Mechanism of inhibition caused by long
chain fatty acids in anaerobic digestion. Biotech. Bioeng. 12: 1591-1610.
Hartmann H, Ahring B. K. Anaerobic digestion of the organic fraction of municipal solid
waste: Influence of co-digestion with manure. Water Research 2005; 39: 1543–1552.
Hawkes, F. R., Dinsdale, R., Hawkes, D. L. and Hussy, I. (2002). Sustainable fermentative
hydrogen production: challenges for process optimisation. International Journal of
Hydrogen Energy 27(11-12): 1339-1347.
Kaparaju P, Buendia I, Ellegaard L, Angelidakia I. Effects of mixing on methane production
during thermophilic anaerobic digestion of manure: Lab-scale and pilot-scale
studies. Bioresource Technology 2008; 99: 4919–4928.
Kaparaju P, Rintala J. Anaerobic co-digestion of potato tuber and its industrial by-products
with pig manure. Resources, Conservation and Recycling 2005; 43: 175–188.
Kaparaju P, Serrano M, Angelidaki I. Effect of reactor configuration on biogas production
from wheat straw hydrolysate. Bioresource Technology 2009; 100: 6317–6323.
Kapdan, I. K. and Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme
and Microbial Technology 38(5): 569-582.
kolumbus, F. (2007).Basic Information on Biogas.
Komemoto K, Lim Y.G, Nagao N, Onoue Y, Niwa C, Toda T. Effect of temperature on
VFA’s and biogas production in anaerobic solubilization of food waste. Waste
Management 2009; 29: 2950–2955.
Koster, I. W. and Cramer, A. (1987). Inhibition of methanogenesis from acetate in granular
sludge by long chain fatty acids. Appl. Env. Microbiol. 53(2): 403-409.
Koster, I. W. and Lettinga, G. (1988). Anaerobic digestion at extreme ammonia
concentrations. Biological Wastes 25(1): 51-59.
Kotsopoulos T. A, Fotidis I. A, Tsolakis N, Martzopoulos G. G. Biohydrogen production
from pig slurry in a CSTR reactor system with mixed cultures under
hyper-thermophilic temperature (70℃). biomass and bioenergy 2009; 33: 1168–1174.
Lalman, J. A. (2000).Anaerobic Degradation of Linoleic (C18:2), Oleic (C18:1) and Stearic
(C18:0) Acids and their Inhibitory Effects on Acidogens, Acetogens and Methanogens. In
Civil Engineering, Vol. Doctor of Philosophy, 1-202 Canada: Toronto.
Lansing S, Martin J. F, Botero R, da Silva T. N, da Silva E. D. Methane production in
low-cost, unheated, plug-flow digesters treating swine manure and used cooking
grease. Bioresource Technology 2010; 101: 4362–4370.
Lehninger, A. L., Nelson, D. L. and Cos, M. M. (1999). Principles of Biochemistr3. N.Y.:
W.H. Freernan & Sons.
Lehtom¨aki A, Huttunen S, Rintala J.A. Laboratory investigations on co-digestion of energy
crops and crop residues with cow manure for methane production: Effect of crop to
manure ratio. Resources, Conservation and Recycling 2007; 51: 591–609.
Lehtomaki A, Huttunen S, Lehtinen T.M, Rintala J.A. Anaerobic digestion of grass silage in
batch leach bed processes for methane production. Bioresource Technology 2008; 99:
3267–3278.
Li, J., Ren, N., Li, B., Qin, Z. and He, J. (2008). Anaerobic biohydrogen production from
monosaccharides by a mixed microbial community culture. Bioresource Technology
99(14): 6528-6537.
Liu K, Tang Y.Q, Matsui T, Morimura S, Wu X. L, Kida K. Thermophilic anaerobic
co-digestion of garbage, screened swine and dairy cattle manure. Journal of Bioscience
and Bioengineering 2009; 107: 1: 54–60.
Luste S, Luostarinen S. Anaerobic co-digestion of meat-processing by-products and sewage
sludge – Effect of hygienization and organic loading rate. Bioresource Technology
2010; 101: 2657–2664.
Møller H.B, Nielsen A.M, Nakakubo R, Olsen H.J. Process performance of biogas digesters
incorporating pre-separated manure. Livestock Science 2007; 112: 217–223.
Møller H.B, Sommer S.G, Ahring B.K. Methane productivity of manure, strawand solid
fractions of manure. Biomass and Bioenergy 2004; 26: 485 – 495.
Mshandete, A., Kivaisi, A., Rubindamayugi, M. and Mattiasson, B., 2004, “Anaerobic batch co-digestion of sisal pulp and Wsh wastes," Bioresource Technology, Vol. 95, pp. 19-24.
Murto M, Bjo¨rnsson L, Mattiasson B. Impact of food industrial waste on anaerobic
co-digestion of sewage sludge and pig manure. Journal of Environmental
Management 2004; 70: 101–107.
Nallathambi Gunaseelan, V. (1997). Anaerobic digestion of biomass for methane
production: A review. Biomass and Bioenergy 13(1-2): 83-114.
Nandi, R. and Sengupta, S. (1998). Microbial production of hydrogen: an overview. Crit
Rev Microbiol 24: 61-84.
Neves L, Oliveira R, Alves M.M. Fate of LCFA in the co-digestion of cow manure, food
waste and discontinuous addition of oil. Water research 2009; 43: 5142–5150.
Parkin, G. F. and Owen, W. F., 1986, “Fundamentals of Anaerobic Digestion of Wastewater
Sludge," Journal of Environmental Engineering, Vol. 112, pp. 867-920.
Parkin, G., Speece, R., Yang, C. and Kocher, W. (1983). Response of methane fermentation
systems to industrial toxicants. Journal of WPCF 55(1): 44-53.
Pavlostathis, S. G. and Giraldo-Gomez, E. (1991). kinetics of anaerobic treatment. War. Sci.
Tech 24(8): 35-59.
Perle, M., Kimchie, S. and Shelef, G. (1995). Some biochemical aspects of the anaerobic
degradation of dairy wastewater. Water Research 29(6): 1549-1554.
Petruy, R. and Lettinga, G. (1997). Digestion of a milk-fat emulsion. Bioresource
Technology 61(2): 141-149
Rinzema, A. (1988).Anaerobic treatment of wastewater with high concentration of lipid and
sulphate. In Wageningen, Vol. Ph.D.Netherlands: Wageningen Agriculturaal University.
Rinzema, A., Boone, M., Vanknippenberg, K. and Lettinga, G. (1994). Bactericidal effect of
long chain fatty acids in anaerobic digestion. Water Environment Research 66(1): 40-49.
Rubia M.A, Perez M, Romero L.I, Sales D. Effect of solids retention time (SRT) on pilot
scale anaerobic thermophilic sludge digestion. Process Biochemistry 2006; 41: 79–86.
Salminen E. A, Rintala J. A. Semi-continuous anaerobic digestion of solid poultry
slaughterhouse waste: effect of hydraulic retention time and loading. Water Research
2002; 36: 3175–3182.
Skillman L.C, Bajsab O, Ho L, Santhanamc B, Kumarc M, Ho G. Influence of high gas
production during thermophilic anaerobic digestion in pilot-scale and lab-scale
reactors on survival of the thermotolerant pathogens Clostridium perfringens and
Campylobacter jejuni in piggery wastewater. water research 2009; 43: 3281 – 3291.
Song Y.C, Kwon S. J, Woo J.H. Mesophilic and thermophilic temperature co-phase
anaerobic digestion compared with single-stage mesophilic- and thermophilic
digestion of sewage sludge. Water Research 2004; 38: 1653–1662.
Sonntag, N. O. V. (1979).Composition and characteristics of individual fats and oils. In:
Bailey's hdustrial Oil and Fat Products., Vol. 4th ed.(Ed D. Swem). Nekv York: John
Wiley & Sons.
Sosnowaki, P., Wieczorek, A. and Ledakowicz, S., 2003, “Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes," Advances in Environmental Research, Vol. 7, pp. 609-616.
Soubes, M., Muxi, L., Fernandez, A., Tarlera, S. and Quirolo, M. (1994). Inhibition of methanogenesis from acetate by Cr+3 and ammonia. Biological Letters 16(2): 195-200.
Ueno, Y., Tatara, M., Fukui, H., Makiuchi, T., Goto, M. and Sode, K. (2007). Production of hydrogen and methane from organic solid wastes by phase-separation of anaerobic process. Bioresource Technology 98(9): 1861-1865.
Ugwuanyi J. O, Harvey L.M, McNeil B. Effect of digestion temperature and pH on
treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic
digestion of model high strength agricultural waste. Bioresource Technology 2005; 96:
707–719.
Victor Riau M, Angeles D. R., Montserrat P. Temperature-phased anaerobic digestion
(TPAD) to obtain class A biosolids: A semi-continuous study. Bioresource Technology
2010; 101: 2706–2712.
Vidal, G., Carvalho, A., Méndez, R. and Lema, J. M. (2000). Influence of the content in fats
and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresource
Technology 74(3): 231-239.
Ward A. J, Hobbs P. J, Holliman P. J, Jones D. L. Optimisation of the anaerobic digestion of
agricultural resources. Bioresource Technology 2008; 99: 7928–7940.
Yen, H. W. and Brune, D. E., 2007, “Anaerobic co-digestion of algal sludge and waste paper to produce methane," Bioresource Technology, Vol. 98, pp. 130-134.
Zahera U, Lia R, Jeppsson U, Steyerd J.P, Chena S. GISCOD: General Integrated Solid
Waste Co-Digestion model. water research 2009; 43:2717– 2727.
Zoetemeyer, R. J., Arnoldy, P., Cohen, A. and Boelhouwer, C. (1982). Influence of
temperature on the anaerobic acidification of glucose in a mixed culture forming part of a
two-stage digestion process. Water Research 16(3): 313-321.
指導教授 王鯤生(Kuen-Sheng Wang) 審核日期 2011-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明