博碩士論文 953403020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.147.80.94
姓名 劉建嘉(Chien-Chia Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高壓效應對紊流燃燒速度之影響
(High Pressure Effects on Turbulent Burning Velocities)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文介紹一新型高壓預混紊流燃燒設備系統及相關高壓預混紊焰實驗研究。此高壓燃燒設備採內外雙腔體設計,含內部的風扇擾動式紊流燃燒爐與外部的壓力緩衝安全氣艙,其腔體四面均具備光學量測視窗。本論文採用中心引燃向外傳播之球狀火焰,分別於靜態層流與等向性均勻紊流場中,針對0.1 ~ 1.0 MPa等不同初始壓力(p)條件進行燃燒速度之量測。實驗結果顯示,不同於層流燃燒速度(laminar burning velocity, SL)所呈現之高壓弱化效應,提高壓力確實可提升紊流燃燒速度(turbulent burning velocity, ST)。我們推測高壓之所以能提升紊焰速度,主要是因為高壓下火焰厚度變薄,導致火焰面不穩定性被強化,進而提高火焰面皺摺程度的緣故。與先前的本生燈紊焰速度比較後發現,球狀紊焰之ST/SL數據較低,但其隨壓力變化之趨勢相同。依運動黏滯係數(kinematic viscosity,?)隨高壓遞減之比例,調整高壓燃燒設備之紊流場參數,我們也針對等雷諾數(Reynolds number, ReT = u?LI/?)條件進行高壓ST量測,其中u?與LI分別為均方根紊流擾動速度與紊流積分長度尺度。等ReT實驗結果指出,ST如同SL亦隨壓力增加呈負指數遞減,顯示燃燒速度隨壓力變化之一致性。整體而言,當p固定時,ST隨ReT增加而增加;但當ReT為定值時,ST/SL隨u?/SL變化之曲線均呈現極為顯著的彎折現象。實驗結果並顯示,在p = 0.1 ~ 1.0 MPa而ReT = 6,700 ~ 14,200的變化範圍內,ReT對於強化ST/SL所扮演的重要效應,即紊流強度與流體黏性之耦合流場效應,其強弱並非由ReT的數值來決定。這是因為ReT對於提升ST的實際作用主要還是取決於紊流強度而非高壓效應。此外,我們發現校正至平均傳遞變數 = 0.5之球狀紊焰ST值與先前本生燈紊焰之數據相當吻合。這意味著對於不同紊焰幾何之ST比較,以 = 0.5所對應之火焰面來定義ST是一較佳的選擇。最後,我們會針對ST/SL隨數種不同無因次參數之整體變化關係進行討論。
摘要(英) A new apparatus for studies of turbulent premixed flames at atmospheric and elevated pressures is presented. This apparatus is of dual-chamber optically-accessible design, combining an inner fan-stirred turbulent burner and an outer pressure-absorbing safety chamber. Burning velocity measurements for centrally-ignited, outwardly-propagating lean premixed spherical flames under both quiescent and turbulent conditions are conducted over an initial pressure range of p = 0.1 ~ 1.0 MPa. It is found that, contrary to the suppressing effect on laminar burning velocities (SL), pressure elevation significantly enhances turbulent burning velocities (ST). It is suggested that such flame speed magnifications are attributed primarily to boosted flame wrinkling induced by augmented flame front instabilities on thinning flame at elevated pressure. Our spherical flame data show similar variation trends but have lower values of ST/SL as compared with previous Bunsen flame data. By adjusting turbulence properties in proportion to the decreasing kinematic viscosity (?), measurements of ST at increasing p under constant Reynolds numbers (ReT ? u?LI/?) conditions are also performed, where u? and LI are respectively the r.m.s. turbulent fluctuation velocity and the integral length scale of turbulence. Results show that ST decreases similarly as SL with increasing p in minus exponential manners at constant ReT of 6,700 ~ 14,200, revealing the global response of burning velocities to pressure. In general, at fixed p, the higher ReT, the higher ST; however, the curves of ST/SL as a function of u?/SL are all found to exhibit very strong bending under constant ReT conditions. These results also clearly reveal that the important effect of ReT, comprising the joint fluid flow effect of turbulent intensity and fluid viscosity, on ST/SL enhancement depends implicitly on the non-equal contributions primarily from turbulence and secondarily from pressure, not explicit on the magnitudes of ReT. Moreover, we find that the modified values of ST at mean progress variable c ̅ ? 0.5 show good agreements between previous Bunsen-type and present spherical flames, suggesting that the turbulent burning velocity determined at flame surfaces with c ̅ = 0.5 may be a better representative of itself regardless of the flame geometries. Finally, various general correlations of turbulent burning velocities are discussed.
關鍵字(中) ★ 高壓預混紊流燃燒
★ 球狀火焰
★ 紊流燃燒速度
★ 雷諾數
關鍵字(英) ★ high pressure turbulent premixed combustion
★ spherical flame
★ turbulent burning velocity
★ Reynolds number
論文目次 Abstract II
中文摘要 III
致謝 IV
Table of Contents V
List of Tables VII
List of Figures VIII
Nomenclature XIII
Chapter 1 Introduction 1
1.1 Why study high pressure turbulent premixed combustion? 1
1.2 How study high pressure turbulent premixed combustion? 2
1.3 What we aim to know? 3
1.4 Thesis outline 4
Chapter 2 Selected Reviews of Relevant Literature 5
2.1 High pressure effects on laminar premixed flames 5
2.2 High pressure effects on turbulent premixed flames 6
2.3 High-pressure turbulent syngas premixed flames 8
2.4 High-pressure turbulent flames at constant Reynolds numbers 12
2.5 Turbulent burning velocities of different flame geometries 14
Chapter 3 Experimental Apparatuses and Diagnostics 17
3.1 High-pressure turbulent premixed combustion facility 17
3.2 Experimental methods 18
3.3 Particle image velocimetry and wavelet transform 21
Chapter 4 Results and Discussion 24
4.1 Laminar burning velocities at elevated pressure 24
4.1.1 Laminar methane flames 24
4.1.2 Laminar syngas flames 25
4.2 Turbulent burning velocities at elevated pressure 27
4.2.1 Turbulent properties at elevated pressure 27
4.2.2 Turbulent methane flames 28
4.2.3 Turbulent syngas flames 32
4.3 Turbulent burning velocities at constant Reynolds numbers 36
4.3.1 Turbulent methane flames 36
4.3.2 Turbulent burning velocities at = 0.5 39
Chapter 5 Concluding Remarks 46
5.1 Turbulent premixed combustion at elevated pressures 46
5.1.1 High-pressure effects on laminar premixed flames 46
5.1.2 High-pressure effects on turbulent premixed flames 46
5.1.3 High-pressure turbulent premixed flames at constant Reynolds numbers 47
5.2 Some recommendations for future works 47
Bibliography 49
參考文獻 Abdel-Gayed RG, Bradley D, Lawes M (1987) Turbulent burning velocities: a general correlation in terms of straining rates. Proceedings of the Royal Society of London Series A 414:389-413
Bédat B, Cheng RK (1995) Experimental study of premixed flames in intense isotropic turbulence. Combustion and Flame 100:485-94
Bradley D, Gaskell PH, Gu XJ (1996) Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: a computational study. Combustion and Flame 104:176-98
Bradley D, Haq MZ, Hicks RA, Kitagawa T, Lawes M, Sheppard CGW, Woolley R (2003) Turbulent burning velocity, burned gas distribution, and associated flame surface definition. Combustion and Flame 133:415-30
Bradley D, Hicks RA, Lawes M, Sheppard CGW, Woolley R (1998) The measurement of laminar burning velocities and Markstein numbers for iso-octane?air and iso-octane?n-heptane?air mixtures at elevated temperatures and pressures in an explosion bomb. Combustion and Flame 115:126-44
Bradley D, Lawes M, Liu K, Woolley R (2007) The quenching of premixed turbulent flames of iso-octane, methane and hydrogen at high pressures. Proceedings of the Combustion Institute 31:1393-400
Bradley D, Lawes M, Mansour MS (2011) Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 1.2 MPa. Combustion and Flame 158:123-38
Brown MJ, McLean IC, Smith DB, Taylor SC (1996) Markstein lengths of CO/H2/air flames, using expanding spherical flames. Proceedings of the Combustion Institute 26:875-81
Burke MP, Chaos M, Dryer FL, Ju YG (2010) Negative pressure dependence of mass burning rates of H2/CO/O2/diluent flames at low flame temperatures. Combustion and Flame 157:618-31
Daniele S, Jansohn P, Mantzaras J, Boulouchos K (2011) Turbulent flame speed for syngas at gas turbine relevant conditions. Proceedings of the Combustion Institute 33:2937-44
Dinkelacker F, Holzler S (2000) Investigation of a turbulent flame speed closure approach for premixed flame calculations. Combustion Science and Technology 158:321-40
Dinkelacker F, Manickam B, Muppala SPR (2011) Modelling and simulation of premixed turbulent CH4/H2/air flames with an effective Lewis number approach. Combustion and Flame doi:10.1016/j.combustflame.2010.12.003
Driscoll JF (2008) Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Progress in Energy and Combustion Science 34:91-134
Egolfopoulos FN, Law CK (1990) Chain mechanisms in the overall reaction orders in laminar flame propagation. Combustion and Flame 80:7-16
Elliot M (1981) Chemistry of Coal Utilization. New York:John Wiley & Sons
Glassman I, Yetter RA (2008) Combustion. 4th ed. Amsterdam:Academic Press
Gnanapragasam N, Reddy B, Rosen M (2009) Reducing CO2 emissions for an IGCC power generation system: effect of variations in gasifier and system operating conditions. Energy Conversion and Management 50:1915-23
Gouldin FC (1987) An application of fractals to modeling premixed turbulent flames. Combustion and Flame 68:249-66
Gu XJ, Haq MZ, Lawes M, Woolley R (2000) Laminar burning velocity and Markstein lengths of methane-air mixtures. Combustion and Flame 121:41-58
Gülder ÖL (1990) Turbulent premixed flame propagation models for different combustion regimes. Proceedings of the Combustion Institute 23:743-50
Hassan MI, Aung KT, Faeth GM (1997) Properties of laminar premixed CO/H2/air flames at various pressures. Journal of Propulsion and Power 13:239-45
Hassan MI, Aung KT, Faeth GM (1998) Measured and predicted properties of laminar premixed methane/air flames at various pressures. Combustion and Flame 115:539-50
Higman C, van der Burgt M (2008) Gasification. 2nd ed. Amsterdam:Gulf Professional Publishing
Huang CC, Shy SS, Liu CC, Yan YY (2007) A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes. Proceedings of the Combustion Institute 31:1401-9
Huang J, Fang Y, Chen H, Wang Y (2003) Coal gasification characteristics in a pressurized fluidized bed. Energy and Fuels 17:1474-9
Ichikawa Y, Otawara Y, Kobayashi H, Ogami Y, Kudo T, Okuyama M, Kadowaki S (2011) Flame structure and radiation characteristics of CO/H2/CO2/air turbulent premixed flames at high pressure. Proceedings of the Combustion Institute 33:1543-50
Jomaas G, Law CK, Bechtold JK (2007) On transition to cellularity in expanding spherical flames. Journal of Fluid Mechanics 583:1-26
Kelley AP, Jomaas G, Law CK (2009) Critical radius for sustained propagation of spark-ignited spherical flames. Combustion and Flame 156:1006-13
Kitto JB, Stultz SC (2005) Steam: Its Generation and Use. 41st ed. Barberton:The Babcock & Wilcox Company
Kobayashi H, Kawabata Y, Maruta K (1998) Experimental study on general correlation of turbulent burning velocity at high pressure. Proceedings of the Combustion Institute 27:941-8
Kobayashi H, Kawazoe H (2000) Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames. Proceedings of the Combustion Institute 28:375-82
Kobayashi H, Nakashima T, Tamura T, Maruta K, Niioka T (1997) Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa. Combustion and Flame 108:104-17
Kobayashi H, Seyama K, Hagiwara H, Ogami Y (2005) Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature. Proceedings of the Combustion Institute 30:827-34
Kobayashi H, Tamura T, Maruta K, Niioka T, Williams FA (1996) Burning velocity of turbulent premixed flames in a high-pressure environment. Proceedings of the Combustion Institute 26:389-96
Law CK, Jomaas G, Bechtold JK (2005) Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment. Proceedings of the Combustion Institute 30:159-67
Lawes M, Ormsby MP, Sheppard CGW, Woolley R (2005) Variation of turbulent burning rate of methane, methanol, and iso-octane air mixtures with equivalence ratio at elevated pressure. Combustion Science and Technology 177:1273-89
Lipatnikov AN, Chomiak J (2002) Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Progress in Energy and Combustion Science 28:1-74
Lipatnikov AN, Chomiak J (2010) Effects of premixed flames on turbulence and turbulent scalar transport. Progress in Energy and Combustion Science 36:1-102
Littlejohn D, Cheng RK, Noble DR, Lieuwen T (2010) Laboratory investigations of low-swirl injectors operating with syngases. ASME Journal of Engineering for Gas Turbines and Power 132:011502
Liu CC, Shy SS, Chen HC, Peng MW (2011a) On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure. Proceedings of the Combustion Institute 33:1293-9
Liu CC, Shy SS, Chiu CW, Peng MW, Chung HJ (2011b) Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment. International Journal of Hydrogen Energy 36:8595-603
Moreau P, Boutier A (1976) Laser velocimeter measurements in a turbulent flame. Proceedings of the Combustion Institute 16:1747-56
Natarajan J, Lieuwen T, Seitzman J (2007) Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure. Combustion and Flame 151:104-19
Peters N (1999) The turbulent burning velocity for large-scale and small-scale turbulence. Journal of Fluid Mechanics 384:107-32
Peters N (2000) Turbulent Combustion. Cambridge:Cambridge University Press
Plessing T, Kortschik C, Peters N, Mansour MS, Cheng RK (2000) Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proceedings of the Combustion Institute 28:359-66
Qin X, Ju YG (2005) Measurements of burning velocities of dimethyl ether and air premixed flames at elevated pressures. Proceedings of the Combustion Institute 30:233-40
Rezaiyan J, Cheremisinoff NP (2005) Gasification Technologies: A Primer for Engineers and Scientists. 1st ed. Boca Raton:Taylor & Francis
Ronney PD (1995) Some open issues in premixed turbulent combustion. in: Buckmaster J, Takeno T, eds. Modeling in Combustion Science. Berlin:Springer-Verlag, pp. 3-22
Shepherd IG, Cheng RK (2001) The burning rate of premixed flames in moderate and intense turbulence. Combustion and Flame 127:2066-75
Shy SS, I WK, Lin ML (2000a) A new cruciform burner and its turbulence measurements for premixed turbulent combustion study. Experimental Thermal and Fluid Science 20:105-14
Shy SS, Lin WJ, Peng KZ (2000b) High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner. Proceedings of the Combustion Institute 28:561-8
Shy SS, Lin WJ, Wei JC (2000c) An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion. Proceedings of the Royal Society of London Series A 456:1997-2019
Shy SS, Yang SI, Lin WJ, Su RC (2005) Turbulent burning velocities of premixed CH4/diluent/air flames in intense isotropic turbulence with consideration of radiation losses. Combustion and Flame 143:106-18
Shy SS, Chen YC, Yang CH, Liu CC, Huang CM (2008) Effects of H2 or CO2 addition, equivalence ratio, and turbulent straining on turbulent burning velocities for lean premixed methane combustion. Combustion and Flame 153:510-24
Shy SS, Liu CC, Shih WT (2010) Ignition transition in turbulent premixed combustion. Combustion and Flame 157:341-50
Sun HY, Yang SI, Jomaas G, Law CK (2007) High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proceedings of the Combustion Institute 31:439-46
Sung CJ, Law CK (2008) Fundamental combustion properties of H2/CO mixtures: ignition and flame propagation at elevated pressures. Combustion Science and Technology 180:1097-116
Tse SD, Zhu DL, Law CK (2000) Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres. Proceedings of the Combustion Institute 28:1793-800
Tse SD, Zhu DL, Law CK (2004) Optically accessible high-pressure combustion apparatus. Review of Scientific Instruments 75:233-9
Yang SI, Shy SS (2002) Global quenching of premixed CH4/air flames: effects of turbulent straining, equivalence ratio, and radiative heat loss. Proceedings of the Combustion Institute 29:1841-7
Yang TS, Shy SS (2005) Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements. Journal of Fluid Mechanics 526:171-216
Yang TS, Shy SS, Chyou YP (2005) Spatiotemporal intermittency measurements in a gas-phase near-isotropic turbulence using high-speed DPIV and wavelet analysis. Journal of Mechanics 21:157-69
指導教授 施聖洋(Shenqyang Shy) 審核日期 2011-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明