博碩士論文 93343047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.144.43.78
姓名 陳加偉(Chia-wei Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氣體於微流道內之熱流特性研究及其應用
(Heat Transfer and Friction Characteristics of Gaseous Flow in Microtubes)
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以實驗方法探討氣體於微流道中之熱流特性,測試段分為平滑管與粗糙管兩類。平滑管管徑分別為86、308以及920 ?m三種,工作流體為空氣氣體,探討微流道熱流實驗尺寸效應所產生之影響,依不同管徑各實驗條件下最大Kn數範圍為2×10-4~7.2×10-5,故本研究微流道內流體流動型式皆仍於連續流體流動狀態內。實驗結果證實傳統大管徑壓降與熱傳關係式依然適用於本研究所使用管徑範圍之微流道,並無明顯尺寸效應。
粗糙管研究則藉由特殊製作出之內管徑約為1 mm之粗糙流道來探討表面粗糙度於微流道中對流體流動特性之影響,粗糙結構依類型可分為結構性與非結構性粗糙管。研究結果發現於粗糙管實驗中以非結構性粗糙表面有較佳之熱傳增強效果,但無論是哪種粗糙表面皆會使管內摩擦係數明顯增加;另於粗糙管研究中,同時使用空氣與二氧化碳兩種氣體為工作流體進行比較,實驗結果發現不同工作流體所得到之實驗結果相同,沒有明顯差異。
於本研究中,因氣體具有可壓縮性,故於實驗數據分析時將使用壓縮流理論所推導出之關係式進行數據換算,以探討壓縮性對於微流道內熱流特性影響,研究結果發現考慮到氣體壓縮性後,管內摩擦係數和傳統關係式相符。於熱傳實驗時考慮到氣體熱傳量小,須注意熱分流(Thermal Shunt)問題,管壁溫度量測方式使用Yang and Lin [2007]所使用之液晶熱像法(Liquid Crystal Thermography)進行溫度量測,同時為了驗證熱分流對實驗所產生之影響,另以傳統黏貼熱電偶方式進行溫度量測,實驗結果證實以液晶熱像法可成功避免熱分流問題而得到正確之管壁表面溫度,而使用熱電偶量測溫度時,則可發現當管徑與熱傳量逐漸變小時,因熱分流使得所量測到管壁溫度失真問題越顯嚴重,進而影響實驗結果,於微流道氣體熱傳實驗,熱分流問題已不再可以忽略,需加以避免。
本研究除了針對微管內熱流特性進行基礎研究外,並應用其相關研究結果設計製作一扁平管微流道熱交換器進行測試,除了熱交換器單體性能測試以驗證微流道內熱流特性研究結果外,並加裝一噴霧裝置以進行熱交換器熱傳增強研究,研究結果顯示微流道熱交換器設計時依舊可使用傳統關係式進行計算設計,和前述微管內熱流特性研究結果相符,且適當的噴霧量可大幅增加熱交換器熱傳性能。
摘要(英) Experiments were conducted in this research to investigate size and roughness effect on flow characteristics and heat transfer coefficient of air and CO2 flow in circular micro-tubes.
For smooth microtubes with inside diameter of 86, 308 and 920 ?m, the Liquid Crystal Thermography method was used to measure the tube surface temperature for avoiding the thermocouple wire thermal shunt effect. The experimental results show that the friction coefficient of gas flow in micro tube is the same as that in the conventional larger tubes if the effect of compressibility was well taken into consideration. The conventional heat transfer correlation for laminar and turbulent flow can be well applied for predicting the fully developed gaseous flow heat transfer performance in microtubes. There is no significant size effect for air flow in tubes within this diameter range.
For rough tubes, the internal surfaces are structure helical fin and random roughness. The rough circular tubes were lab made Nickel tube with diameters ranging from 901 to 977 ?m and roughness elements from 5.3 to 44.6 ?m in height. The experimental results indicated that the friction factor was significantly higher than the prediction of conventional correlations for smooth tube both in laminar and turbulent flow. Heat transfer enhancement in laminar flow is slight, but in turbulent flow the heat transfer enhancement was significant and the enhancement increases with the increasing of Re for the random rough tubes.
In order to verify the conclusions of the above experiments, a micro-channel heat exchanger was also designed and tested in this study. It provides an experimental analysis on the heat transfer performance of a flat aluminum tube micro-channel heat exchanger with/without spray cooling. The effects of water spraying rate, air flow rate and relative humidity were investigated. The test results show that the analysis methods for conventional size heat exchanger are still well applied in micro-channel heat exchanger; the spray cooling can increase the heat transfer performance with increasing spraying rate but without penalty of increased flow resistance at low spray conditions.
關鍵字(中) ★ 表面粗糙度
★ 液晶熱像法
★ 熱分流
★ 微流道熱交換器
★ 噴霧冷卻
★ 尺寸效應
★ 微流道
★ 氣體
關鍵字(英) ★ micro-channel heat exchanger
★ thermal shunt
★ liquid crystal thermography
★ roughness
★ size effect
★ micro tube
★ gaseous flow
★ spray cooling
論文目次 中文摘要 i
Abstract iii
圖目錄 ix
表目錄 xii
符號說明 xiii
第一章 前言 1
第二章 文獻回顧 3
2.1 管內摩擦 3
2.1.1 傳統理論摩擦因子 3
2.1.2 微流道內壓降實驗 4
2.2 管內熱傳 13
2.2.1 傳統理論熱傳係數 13
2.2.2 微流道內熱傳實驗 14
2.3 結論 20
第三章 實驗方法 38
3.1 微流道測試段 38
3.1.1 平滑不鏽鋼管 38
3.1.2 粗糙管 38
3.2 實驗系統 40
3.3 液晶熱像法 44
3.4 實驗方法 46
3.4.1 液晶色調值與溫度校正 46
3.4.2 熱損與溫度差關係實驗 47
3.4.3 實驗步驟 47
3.5 實驗數據分析 48
3.5.1 摩擦係數 48
3.5.2 熱傳係數 49
第四章 實驗結果與討論 73
4.1 入口發展長度 73
4.2 軸向熱傳導探討 74
4.3 實驗熱損估算 75
4.4 Viscous heating 75
4.5 熱分流 (Thermal Shunt) 現象 76
4.6 平滑管內熱流特性 79
4.6.1 摩擦壓降 80
4.6.2 熱傳係數 81
4.7 粗糙管內熱流特性 82
4.7.1 摩擦壓降 83
4.7.2 熱傳係數 85
第五章 微流道熱交換器性能測試 115
5.1 微流道熱交換器設計與製作 115
5.2 實驗方法 115
5.3 實驗參數與數據分析 116
5.4 實驗結果與討論 118
5.4.1 扁平管微流道熱交換器單體測試結果 118
5.4.2 扁平管微流道熱交換器噴霧熱傳實驗結果 118
第六章 結論 128
參考文獻 130
附錄 144
A. 發表期刊與研討會論文 144
B. 氣體流體於一固定截面積流道內等溫狀態下之管內摩擦係數計算方程式推導 145
C. Nusselt Number 誤差分析計算方式 148
D. 實驗各項參數量測範圍 150
參考文獻 Adams, T. M., Abdel-Khalik, S. I., Jeter, S. M., and Qureshi, Z., H., 1998, “An Experimental Investigation of Single-phase Forced Convection in Microchannels,” International Journal of Heat and Mass Transfer, Vol. 41, No. 6-7, pp. 851-857.
Adams, T. M., Dowling, M. F., Abdel-Khalik, S. I., and Jeter, S. M., 1999, “Applicability of Traditional Turbulent Single-phase Forced Convection to Non-Circular Microchannels,” International Journal of Heat and Mass Transfer, Vol. 42, pp. 4411-4415.
Araki, T., Kim, M. S., Iwai, H., and Suzuki, K., 2002, “An Experimental Investigation of Gaseous Flow Characteristics in Microchannels,” Microscale Thermalphysics Engineering, Vol. 6, pp. 117-130.
Arici, M. E., and Aydin, O., 2009, “Conjugate Heat Transfer in Thermally Developing Laminar Flow with Viscous Dissipation Effects,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 1199-1203.
Blasius, H., 1913, “Das Ahnlichkeitsgesetz bei Reibungsvorgangen in Flussigkeiten,” Forschungsarbeiten des Ver. Deutsch. Ing., No. 131. quoted in : Webb, R. L., 1987, Handbook of Single-Phase Heat Transfer, Chapter 4, S. Kakac, R. K. Shah, and W. Aung, Eds., John Wiley & Sons, New York.
Bower, M. B., and Mudawar, I., 1994, “High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Mocro-Chammel Heat Sinks,” International Journal of Heat and Mass Transfer, Vol. 37, No. 2, pp. 321-332.
Bucci, A., Celata G. P., Cumo, M., Serra, E., and Zummo, G., 2003, “Water Single-Phase Fluid Flow and Heat Transfer in Capillary Tubes,” Thermal Science & Engineering, Vol. 11, No. 6, pp. 81-89.
Camci, C., Kim, K., and Hippensteels, S. A., 1992, “A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Image Used in Convective Heat Transfer Studies,” Journal of Turbomachinery, Vol. 114, pp. 765-775.
Campbell, L. A., and Kandlikar, S. G., 2004, “Effect of Entrance Condition on Frictional Losses and Transition to Turbulent in Minichannel Flows,” Proceeding of the 2nd International Conference on Microchannels and Minichannels, June 2004, Rochester, New York.
Celata, G. P., Cumo, M., Gugielmi, M., and Zummo, G., 2002, “Experimental Investigate of Hydraulic and Single-phase Heat Transfer in 0.130-mm Capillary Tube,” Microscale Thermophysical Engineering, Vol. 6, pp. 85-97.
Celata, G. P., Cumo, M., Marconi, V., McPhailand, S. J., and Zummo, G., 2006, “Microtube Liquid Single-phase Heat Transfer in Laminar Flow,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 3538-3546.
Celata, G. P., Cumo, M., McPhail, S. J., Tesfagabir, L., Zummo, G., 2007, “Experimental Study on Compressible Flow in Microtubes,” International Journal of Heat and Fluid Flow, Vol. 28, pp. 28–36.
Celata, G. P., Lorenzini, M., Morini, G. L., and Zummo, G., 2009, “Friction Factor in Micropipe Gas Flow under Laminar, Transition and Turbulent Flow Regime,” International Journal of Heat and Fluid Flow, Vol. 30, pp. 814-822.
Chan, T. L., Frost, S. A., and Jambunathan, K., 2001, “Calibration for Viewing Angle Effect During Heat Transfer Measurements on a Curved Surface,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 2209-2223.
Chang, S. D., and Ro, S. T., 1996, “Pressure Drop of Pure HFC Refrigerants and Their Mixtures Flowing in Capillary Tubes,” International Journal of Multiphase Flow, Vol. 22, No. 3, pp. 551-561.
Chang, Y.-J., and Wang, C.-C., 1997, “Generalized Heat Transfer Correlation for Louver Fin Geometry,” International Journal of Heat and Mass Transfer, Vol. 40, pp. 533-544.
Chang, Y.-J., Hsu, K.-C., Lin, Y.-T., and Wang, C.-C., 2000, “A Generalized Friction Correlation for Louver Fin Geometry,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 2237-2243.
Chen, Z. H., Chen, Z. Y., Lin, S., Kwok, C. C. K., and Li, R. Y., 1991, “Local Frictional Pressure Drop During Vaporization of R-12 through Capillary Tubes,” International Journal of Multiphase Flow, Vol. 17, No. 1, pp. 95-102.
Chen, C., 2004, “Numerical Method for Predicting Three-Dimensional Steady Compressible Flow in Long Microchannels,” Journal of Micromechenical and Microengineering, Vol. 14, pp. 1091-1100.
Choi, B., Barron, R. F., and Warrington, R. O., 1991, “Fluid Flow and Heat Transfer in Microtubes,” Micromechanical Sensors, Actuators, and Systems ASME, Vol. 32, pp. 123-134.
Choquette, S. F., Faghri, M., Kenyon, E. J., and Sunden, B., “Compressible Fluid Flow in Micron Sized Channels,” National Heat Transfer Conference ASME, Vol. 5, pp. 25-32.
Churchill, S. W., 1977, “Friction-Factor Equation Spans All Fluid Flow Regimes,” Chemical Engineering, pp. 91-92.
Colburn, A. P., 1933, “A Method of Correlating Forced Convection Heat Transfer Data and a Comparison with Fluid Friction,” Trans. AICHE, Vol. 19, pp.174-210.; reprinted in 1964, International Journal of Heat and Mass Transfer, Vol. 7, pp. 1359-1384.
Cooper, T. E., Field, R. J., and Meyer, J. F., 1975, “Liquid Crystal Thermography and Its Application to the Study of Convective Heat Transfer,” Journal of Heat Transfer, Vol. 97, pp. 442-450.
Dittus, F. W., and Boelter, L. M. K., 1930, “Heat Transfer in Automobile Radiators of the Tubular Type,” University of California, Berkeley, Publications on Engineering, Vol. 2, No. 13, pp. 443-461.
Filonenko, G., 1954, “Hydraulic Resistance in Pipes,” Teplonergetika, Vol. 1, pp. 40-44.
Gao, P., Person, S. L., and Favre-Marinet, M., 2002, “Scale Effects on Hydrodynamics and Heat Transfer in Two-Dimensional Mini and Microchannels,” International Journal of Thermal Science, Vol. 41, pp.1017-1027.
Gnielinski, V., 1976, “New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow,” International Journal of Chemical Engineering, Vol. 16, pp. 359-368.
Grohmann, S., 2005, “Measurement and Modeling of Single-Phase and Flow-Boiling Heat Transfer in Microtubes,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 4073-4089.
Hao, P. F., He, F., and Zhu, K. Q., 2005, “Flow Characteristics in a Trapezoidal Silicon Microchannel,” Journal of Micromechanical Microengineering, Vol. 15, pp. 1362-1368.
Harley, J., Huang, Y., Bau, H. H., and Zemel, J. N., 1995, “Gas Flow in Microchannels,” Journal of Fluid Mechanical, Vol. 284, pp. 257–274.
Harms, T. M., Kazmierczak, M. J., and Gerner, F. M., 1999, “Developing Convective Heat Transfer in Deep Rectangular Microchannels,” International Journal of Heat Fluid Flow, Vol. 20, pp. 149–157.
Hay, J. L., and Hollingsworth, D. K., 1996, “A Comparison of Trichromic Systems for Use in the Calibration of Polymer-Dispersed Thermochromic Liquid Crystals,” Experimental Thermal and Fluid Science, Vol. 12, pp. 1-12.
Hoffs, A., 1992, “Lquid Crystal Technique For Heat Transfer Measurements Literature Study,” ECOLE POLYTECHNIQUE FEDERALE DELAUSANNE DEPARTEMENT DE MECANIQUE Rapport LTT-92-45, pp. 1-40.
Hohmann, C., and Stephan, P., 2002, “Microscale Temperature Measurement at an Evaporating Liquid Meniscus,” Experimental Thermal and Fluid Science, Vol. 26, pp. 157-162.
Hsieh, S. S, Tsai, H. H, Lin, C. Y, Huang, C. F, and Chien, C. M., 2004, “Gas Flow in a Long Microchannel,” International Journal of Heat and Mass Transfer, Vol. 39, No. 47, pp. 3877-3887.
Incropera, F. P. and DeWitt, D. P., 2007, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York.
Japanese Standards Association, 2001, Surface Roughness Definitions and Designation-JIS B0601, Japan.
Jiang, X. N., Zhou, Z. Y., Huang, X. Y., and Liu, C. Y., 1997, “Laminar Flow through Microchannels Used for Microscale Cooling Systems,” IEE/CPMT Electronic Packaging Technology Conference, pp. 119-122.
Jiang, P. X., Fan, M. H., Si, G. S., and Ren, Z. P., 2001, “Thermal-Hydraulic Performance of Small Scale Micro-Channel and Porous-Media Heat-Exchangers,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 1039-1051.
Judy, J., Maynes, D., and Web, B. W., 2002, “Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 3477-3489.
Kakac, S., Shah, R. K., and Aung, W., 1987, Handbook of Single-Phase Convective Heat Transfer, John Wiley & Sons, New York.
Kandlikar, S. G., Joshi, S., and Tian, S., 2003, “Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter tubes,” Heat Transfer Engineering, Vol. 24, No. 3, pp. 4-16.
Kandlikar, S. G., Schmitt, D., Carrano, A. L., and Taylor, J. B., 2005, “Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels,” Physics of Fluid, Vol. 17, No. 100606, pp. 1-11.
Kandlikar, S. G., Garimella, S., Li, D., Colin, S., and King, M., 2006, Heat Transfer and Fluid Flow in Minichannels and Microchannels, Elsevier, Singapore.
Karniadak, G. E., and Beskok, A., 2002, Microflows: Fundamentals and Simulation, Springer-Verlag, New York.
Kays, W. M., and London, A. L., 1993, Compact Heat Exchangers, 3rd ed., McGraw-Hill, New York.
Ko, H. S. and Gau C., 2011, “Local Heat Transfer Process and Pressure Drop in a Micro-Channel Integrated with Arrays of Temperature and Pressure Sensors,” Microfluid Nanofluid, Vol. 10, pp. 563-577.
Kohl, M. J., Abdel-Khalik, S. I., Jeter, S. M. and Sadowski, D. L., 2005, “An Experimental Investigation of Microchannel Flow with Internal Pressure Measurements,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 1518-1533.
Kumar, V., Paraschivoiu, M., and Nigam, K. D. P., 2011, “Single-Phase Fluid Flow and Mixing in Microchannels,” Chemical Engineering Science, Vol. 66, pp. 1329-1373.
Lelea, D., Nishio, S., and Takano, K., 2004, “The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled Water,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 149-159.
Lelea, D., and Cioabla, A. E., 2011, “The Developing Heat Transfer and Fluid Flow in Micro-Channel heat Sink with Viscous Heating Effect,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 751-758.
Li, Z. X., Du, D. X., and Guo, Z. Y., 2003, “Experimental Study on Flow Characteristics of Liquid in Circular Microtubes,” Microscale Thermophysical Engineering, Vol. 7, pp. 253-265.
Lin, T. Y., 2007, Experimental Analysis on forced convective Heat Transfer Characteristics in Micro Tubes by The Method of Liquid Crystal Thermaography, PhD Dissertation, National Central University, Taiwan.
Lin, T. Y., Yang, C. Y., and Kandlikar, S. G., 2009, “Measurement of Heat Transfer in the Entrance Region of Small Diameter Tubes,” ASME-ICNMM 2009, Pohang, South Korea, No. 82249.
Lin, T. Y., Kandlikar, S. G., 2011, “A Theoretical Model for Axial Heat Conduction Effects During Single-Phase Flow in Microchannels,” Submitted to Journal of Heat Transfer.
Mala, G. M., and Li, D., 1999, “Flow Characteristics of Water in Microtubes,” International Journal of Heat and Fluid Flow, Vol. 20, pp. 142-148.
Maranzana, G., Perry, I., and Maillet, D., 2004, “Mini- and Micro-Channels: Influence of Axial Conduction in the Walls,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 3993-4004.
Morini, G. L., 2004, “Single-Phase Convective Heat Transfer in Microchannels: a Review of Experimental Results,” International Journal of Thermal Sciences, Vol. 43, pp.631-651.
Morini, G. L., 2005, “Viscous Heating in Liquid Flows in Micro-Channels,” International Journal of Heat and Mass Transfer, Vol. 48, No. 36, pp. 3637-3647.
Morini, G. L., Lorenzini, M., and Salvigni, S., 2006, “Friction Characteristics of Compressible Gas Flow in Microtubes,” Experimental Thermal and Fluid Science, Vol. 30, pp. 733-744.
Morini, G. L., Lorenzini, M., Colin, S., and Geoffroy, S., 2007, “Experimental Analysis of Pressure Drop and Laminar to Turbulent Transition for Gas Flows in Microtubes,” Heat Transfer Engineering, Vol. 28, pp. 670-679.
Morini, G. L., Lorenzini, M., Salvigni, S., and Spiga, M., 2009, “Analysis of Laminar-to-Turbulent Transition for Isothermal Gas Flows in Microchannels,” Microfluidics and Nanofluidics, Vol. 7, pp. 181-190.
Muwanga, R., and Hassan, I., 2006, “Local Heat Transfer Measurements in Microchannels Using Liquid Crystal Thermography: Methodology Development and Validation,” Journal of Heat Transfer, Vol. 128, pp. 617-626.
Nguyen, N. T., Bochnia, D., Kiehnscherrf, R., and Dözel, W., 1996, “Investigation of Forced Convection in Microfluid Systems,” Sensors and Actuators, A 55, pp. 49-55.
Nusselt, W., 1910, Mitt. Forsch.-Arb. Ing.-Wes.(VDI-Forsch.-Heft), No.89, pp. 1-38. Quoted in : Webb, R. L., 1987, Handbook of Single-Phase Heat Transfer, Chapter 4, S. Kakac, R. K. Shah, and W. Aung, Eds., John Wiley & Sons, New York.
Papautsky, I., Brazzle, J., Ameel, T., and Frazier, A. B., 1999, “Laminar Fluid Behavior in Micro-Channels Using Micropolar Fluid Theory,” Sensors and Actuators A: Physical, Vol. 73, pp. 101-108.
Peng, X. F., and Wang, B. X., 1993, “Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Mictochannels,” International Journal of Heat and Mass Transfer, Vol. 39, No. 36, pp. 3421-3427.
Peng, X. F., and Peterson, G. P., 1994, “Frictional Flow Characteristics of Water Flowing through Rectangular Microchannels,” Journal of Experimental Heat Transfer, Vol. 7, pp. 249-264.
Peng, X. F., Wang, B. X., Peterson, G. P., and Ma, H. B., 1995, “Experimental Investigation of Heat Transfer in Flat Plates with Rectangular Microchannels,” International Journal of Heat and Mass Transfer, Vol. 38, pp. 127-137.
Peng, X. F. and Peterson, G. P., 1996, “Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures,” International Journal of Heat and Mass Transfer, Vol. 39, No. 12, pp. 2599-2608.
Petukhov, B. S., 1970, “Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties,” in T. F. Irvine and J. P. Hartnett, Eds. Advances in Heat Transfer, Vol. 6, Academic Press, Inc., New York, pp. 504-564.
Pfahler, J., Harley, J., and Bau, H. H., 1990, “Liquid and Gas Transport in Small Channels,” Proceedings of ASME DSC, Vol. 31, pp. 149-157.
Pfahler, J., Harley, J., and Bau, H. H., 1991, “Gas and Liquid Flow in Small Channels,” Micromechanical Sensors, Actuators, and Systems, Vol. 32, pp. 49-60.
Pfund, D., A, Shekarriz, A., Popescu, A., and Welty, J.R., 2000, “Pressure Drops Measurements in a Microchannels,” AIChE Journal, Vol. 46, pp. 1496-1507.
Phares, D. J., Smedley, G. T., and Zhou, J., 2004, “A Study of Laminar Flow of Polar Liquids through Circular Microtubes,” Physics Fluids, Vol. 16, pp. 1267-1272.
Pong, K., Ho, C., Liu, J., and Tai, Y., 1994, “Non-Linear Pressure Distribution in Uniform Microchannels,” Application of Microfabrication to Fluid Mechanics, ASME, Vol. 197, pp. 57-66.
Qu, W., Mala, G. M., and Li, D., 2000, “Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 3925-3936.
Qu, W. and Mudawar, I., 2002, “Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 2549-2565.
Rahman, M. M., 2000, “Measurement of Heat Transfer in Microchannel Heat Sink,” International. Communications in Heat and Mass Transfer, Vol. 27, No. 4, pp. 495-506.
Rostami, A. A., Mujumdar, A. S., and Saniei, N., 2002, “Flow and Heat Transfer for Gas Flowing in Microchannels: a Review,” Heat and Mass Transfer, Vol. 38, pp. 359-367.
Shah, R. K., and Bhatti, M. S., “Laminar Convective Heat Transfer in Ducts,” in Kakac, S., Shan, R. K., and Aung, W., eds., Handbook of Single-Phase Convective Heat Transfer, 1987, John Wiley & Sons, New York.
Shapiro, A. K., 1953, The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. 1-2. John Wiley & Sons, New York.
Tang, G. H., Li, Z., He, Y. L., and Tao, W. Q., 2007, “Experimental Study of Compressibility, Roughness and Rarefaction Influences on Microchannel Flow,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 2282-2295.
Tran, T. N., Wambsganss, M. W., France, D. M., and Jendrzejczyk, J. A., 1993, “Boiling Heat Transfer in a Small, Horizontal, Rectangular Channel,” Atlanta, AIChE Symposium Series, Vol. 89, No. 295, pp. 253-261.
Tran, T. N., Wambsganss, M. W., and France, D. M., 1996, “Small Circular and Rectangular Channel Boiling with Two Refrigerants,” International Journal of Multiphase Flow, Vol. 22, No. 3, pp. 485-498.
Tuckerman, D. B. and Pease, R. F. W., 1981, “High-Performance Heat Sinking for VLSI,” IEEE Electron Device Letter, Vol. EDL-2, No. 5, pp. 126-129.
Turner, S. E., Lam, L. C., Faghri, M. and Gregory, O. J., 2004, “Experimental Investigation of Gas Flow in Microchannels,” Journal of Heat Transfer, Vol. 126, pp. 753-763.
Vijayalakshmi, K., Anoop, K. B., Patel, H. E., Harikrishna, P. V., Sundararajan, T., and Sarit, K., 2009, “Effects of Compressibility and Transition to Turbulence on Flow through Microchannels,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 2196-2204.
Wambsganss, M. W., France, D. M., Jendrzejczyk, J. A., and Tran, T. N., 1993, “Boiling Heat Transfer in Horizontal Small-Diameter Tube,” ASME Journal of Heat Transfer, Vol. 115, No. 4, pp. 963-972.
Wang, B. X., and Peng, X. F., 1994, “Experimental Investigation on Liquid Forced-Convection Heat Transfer through Microchannels,” International Journal of Heat and Mass Transfer, Vol. 37, pp. 73-82.
Warrier, G. R., Dhir, V. K., and Momoda, L. A., 2002, “Heat Transfer and Pressure Drop in Narrow Rectangular Channels,” Experimental Thermal Fluid Science, Vol. 26, pp. 53–64.
Webb, R. L., and Zhang, M., 1998, “Heat Transfer and Friction in Small Diameter Channels,” Microscale Thermophysical Engineering, Vol. 2, pp. 189-202.
Webb, R. L., 1992, Principles of Enhanced Heat Transfer, John Wiley & Sons, New York.
Wu, H. Y. and Cheng, P., 2003a, “Friction Factors in Smooth Trapezoidal Silicon Microchannels with Different Aspect Ratios,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 2519-2525.
Wu, H. Y., and Cheng, P., 2003b, “An Experimental Study of Convective Heat Transfer in Silicon Microchannels with Different Surface Conditions,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 2547-2556.
Wu, P., and Little, W. A., 1983, “Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thomson Refrigerators,” Cryogenics, Vol. 23, pp. 273-277.
Wu, P., and Little, W. A., 1984 “Measurement of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature Refrigerators,” Cryogenics, Vol. 24, pp. 415-420.
Xu, B., Ooti, K. T., Wong, N. T. and Choi, W. K., 2000, “Experimental Investigation of Flow Friction for Liquid Flow in Microchannels,” International Communications in Heat and Mass Transfer, Vol. 27, No. 8, pp. 1165-1176.
Yang, C. Y., Hsu, S. M., Chien, H. T., and Chen, C. S., 2001, “Experimental Investigation of Liquid R-134a and Water Forced Convection Heat Transfer in Small Circular Tubes,” Transaction of the Astronautical Society of the Republic of China, Vol. 33, No. 4, pp. 237-245.
Yang, C. Y., Wu, J. C., Chien, H. T., and Lu, S. R., 2003, “Friction Characteristics of Water, R-134a and Air in Small Tubes,” Microscale Thermophysical Engineering, Vol. 7, pp. 335-348.
Yang, C. Y. & Lin, T. Y, 2007, “Heat Transfer Characteristics of Water Flow in Microtubes,” Experimental Thermal and Fluid Science, Vol. 32, pp. 432-439.
Yen, T. H., Kasagi, N., and Suzuki, Y., 2003, “Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes,” International Journal of Multiphase Flow, Vol. 29, pp. 1771-1792.
Yu, D., Warrington, R., Barron, R., and Ameel, T., 1995, “An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes,” Proceeding of 4th ASME/JSME Thermal Engineering Conference, Vol. 1, pp. 523-530.
王啟川,2001,熱交換器設計,五南圖書出版公司,台北。
呂淑如,2000,水及空氣在小管內之壓降實驗分析,國立中央大學機械工程研究所碩士論文,中壢。
岳志傑,2000,扁平管平行流熱交換器之研製與性能分析,國立中央大學機械工程研究所碩士論文,中壢。
林廷佑,2007,以液晶熱像法探討微小管內之熱傳特性,國立中央大學機械工程研究所博士論文,中壢。
指導教授 楊建裕(Chien-yuh Yang) 審核日期 2011-9-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明