博碩士論文 986201001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:52.14.0.24
姓名 曾慧婷(Hui-ting Zeng)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 地形效應對台灣東北部秋季豪雨的影響:2009年10月11日個案之研究
(Orographic Effects on A Heavy Rainfall Event Over Northeastern Taiwan on 11 October 2009.)
相關論文
★ 1997,98梅雨季節台灣地區降水之特性分析★ 1993-1997年6月午後降水系統之研究
★ 1997與1998年梅雨季台灣西南沿海降水特性之研究★ 夏季台灣西南部降雨之研究
★ 地形效應對TAMEX IOP 13豪雨之影響★ 梅雨季地形對台灣東北部豪雨影響之研究
★ 梅雨結束後季風中斷期北部降水特性之研究★ 梅雨季台灣西南部豪雨之初步研究 (1997年~2004年)
★ 2005年梅雨季6月12號台灣西南部豪雨之分析★ 梅雨季台灣西南部地形對潮濕氣流影響之初步研究
★ 地形效應之影響與2008/6/27‐28台灣西南部局部豪雨事件之探討★ 夏季三個長生命期對流系統與台灣地形效應的研究
★ 颱風渦漩初始化與資料同化對颱風預報的影響★ 2012年6月10-12日台灣超大豪雨的有利條件
★ 2014年8月12日夏季臺灣西南部大豪雨個案分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 選取1995年到2009年間秓季,未受到綜觀擾動直接影響下,在宜蘭蘇澳地區共有14個大豪雨(>200 mm/day)的個案發生,可供研究東北部地形如何影響豪雨之產生及維持。在2009年10月11日,宜蘭地區的日累積雨量為631.5 mm,是14個個案中最大的降雨事件。除了盛行風所帶來的水汽之外,位於南海往海南島前進的颱風芭瑪(PARMA),在10月11日時距台灣約721 km,雖無直接侵台,但其造成影響台灣東北部降雨仍值得研究。因此10月11日宜蘭地區產生631.5 mm的降雨機制,為本研究的主題。
利用中央氣象局傳統測站資料、五分山雷達回波、衛星資料以及ECMWF/ TOGA ( European Centre for Medium -Range Weather Forecasts/Tropical Ocean and Global Atmosphere)等觀測資料分析10月11日的豪雨特性。吾人發現台灣東北部的上游(125 E,25 N)在1400 LST前都有大量向西傳的水汽通量,同時台灣東北部低層的輻合,高層的輻散,提供豪雨發生及維持的有利環境。另外每6分鐘的雷達資料指出,台灣東北部的降雨多在蘭陽平原南側山區發生,並且從台灣東南部北移的雨帶加強蘭陽平原的降雨。日降雨量631.5 mm發生於蘭陽平原的南側斜坡,而蘭陽平原西側斜坡的降雨最大值僅為南側斜坡的15%。
利用WRF模式2.2.1版(Weather Research & Forecasting Model version 2.2.1)的台灣真實地形(CTL_run)模擬出與10月11日觀測類似的降雨環境。宜蘭平原的南側斜坡除盛行風持續的水汽抬升外,在平原南側低層的偏北風亦加強水汽抬升,故降雨在南側斜坡增加很快,是豪雨產生及維持的機制。降雨受到盛行風東風影響,會往內陸(西邊)移動,但因持續的大雨使得南側斜坡上產生了冷池,且有一擾動壓力較大之區域,降雨隨著冷池及擾動壓力梯度往低處(向東)移動。另外在台灣東南部近海的雨帶隨著時間會往北移動,加強台灣東北部的降雨。在宜蘭平原的西側斜坡因其斜坡走向與盛行風風向大致相同,盛行風的抬升較少,且在清晨低層有輻散,不利地形的抬升,降雨較少。由移除台灣地形(NT_run)的模擬實驗,發現其台灣東南部近海的雨帶仍會出現。但無地形效應,宜蘭蘇澳地區的降雨減少了一個數量級以上。而填平蘭陽平原(L-Y_run)的模擬,則發現在少了蘭陽平原的南側斜坡,在原本的斜坡上降雨減少了相當多,可見南側斜坡抬升來自平原的水氣所產生的降雨,亦是相當有貢獻的。
摘要(英) To isolate the orographic effects over Lan-Yang plain and its surrounding areas of northeastern Taiwan due to the northeasterly prevailing wind leading to produce heavy rainfall in Autumn, 14 extremely heavy rainfall (>200 mm day-1) events over northeastern Taiwan are identified when no synoptic disturbances are within 500 km over Taiwan during the period from1995 to 2009. Among there 14 events the maximum accumulated rainfall was 631.5 mm which appeared on October 11, 2009. The mechanism of generating such a very high accumulated rainfall in Lan-Yang plain will be pursued in this study.
The objective of this study is to perform observation analyses of the rainfall data of Central Weather Bureau(CWB) rainfall station, WU-FEN-SHAN(WFS) 6-minute interval radar reflectivity, satellite image and ECMWF/ TOGA ( European Centre for Medium -Range Weather Forecasts/Tropical Ocean and Global Atmosphere) data to examine the heavy rainfall mechanism on October 11 2009. A lots of water vapor flux transported westward before 14 LST to the upstream of northeast Taiwan (at 125 E, 25 N) . The low-level conveged and high-level diverged over northeast Taiwan,also provided a favorable environment for producing and maintaining the heavy rainfall event. Besides, the radar data indicated that northeast rainfall mostly occurred over the southen slopes of Lan-Yang plain and enhanced by east-west oriented rain band from southeast of Taiwan. Daily rainfall maximum 631.5 mm also occurred on southward slope of LY plain and the accumulated rainfall over westward slope of Lan-Yang plain was 15% to that of southward slope.
iv
Weather Research & Forecasting model (version 2.2.1) is employed to simulate the heavy rainfall event which is initialized on 14 LST 10 October 2009. The mechanism for the development and maintance of heavy rainfall is that the orographic lifting moist air by prevailing easterly wind persistently on the southern slope of Lan-Yang plain. In addition, the low level northeasterly wind due to orographic deflection on prevailing wind over southern Lan-Yang plain also enhances rainfall. Rainfall moves westward following with the prevailing wind, but also moves upstream because of the cool pool which was caused by continuous rainfall on southern slope of Lan-Yang plain and local high pressure disturbance. Over western slope of lan-Yang plain, the orientation of terrain parallels to the prevailing wind. As a result, rainfall accumulation is about 30 % of that in the southern slope of Lan-Yang plain. For the noTaiwan terrain(NT_run) case, there was also an east-west oriented rain band over the adjacent sea of southeast Taiwan. Without the orographic lifting, rainfall is reduced at least one order in Ilan and Suao area. In the filled Lan-Yang plain case in which terrain height lower than 500 mm parallels to coast of Lan-Yang plain. Less rainfall occurred because of the reducing lifting and water vapor from Lan-Yang plain. It is quite obvious that moist air lifted by southern slope of Lan-Yang plain has great contribution to heavy rainfall.
關鍵字(中) ★ 宜蘭東北部地區
★ 秋季大豪雨
★ 地形效應
關鍵字(英) ★ extremely heavy rainfall
★ orographic effects
論文目次 中文摘要……………………………………………………………………….…i
英文摘要……………………………………………………………………...…iii
致謝………………………………………………………………………………v
目錄……………………………….……………………………………………..vi
圖表說明………………………………………………………………………..vii
第一章 緒論
1-1 前言………………………………………………………………………….1
1-2 動機…………………………………………………………….....................4
第二章 觀測資料之分析
2-1資料來源……………………………………………………………..............6
2-1.1資料來源……………………………………………………….…...….6
2-1.2 資料分析…………………………………………………………....…7
2-2個案分析……………………………………………………………..............8
2-2.1綜觀分析…………………………………………………………….....8
2-2.2衛星雲圖…………………………………………………………….....9
2-2.3雷達回波……………………………………………………………...10
2-2.4時雨量…………………………………………………………….......11
第三章 模擬結果
3-1模式介紹……………………………………………………………..........13
3-1.1模式簡介………………………………………………………….…..13
3-1.2模式設定………………………………………………………….…..14
3-2 模擬結果討論……………………………………………………….……..15
3-2.1大尺度環境…………………………………………………….…......15
3-2.2模擬結果與觀測……………………………………………………...16
3-2.3西側山坡與南側山坡豪雨機制……………………………………...18
3-2.4移除台灣地形之敏感度實驗………………………………………...20
3-2.5填平宜蘭平原之敏感度實驗………………………………………...21
第四章 結論與未來展望
4-1結論……………………………………………………………..............23
4-2未來展望……………………………………………………………......24
參考文獻………………………………………………………………..............25
論文圖表………………………………………………………………..............27
參考文獻 Chen, S.-H., and J. Dudhia, 2000: Annual report: WRF physics, Air Force Weather Agency,
38pp.
Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea.
Rev., 131, 1323-1341.
Chen, C.-S., C.-Y. Lin, C.-C. Liu, P.-L. Lin, and W.-C. Chen, 2007: Statistics of heavy
rainfall occurrences in Taiwan. Wea. Forecasting, 22, 981-1002.
Chen, C.-S., Lu C-H, Chen W-C, 2007:Numerical experiments investigating the
Mechanisms of a heavy rainfall event over northeastern Taiwan and a mesovortex
During TAMEX. Meteor. Atmos. Phys. 95, 155-177.
Chen, C.-S.,C.-L. Liu,M.-C., Yen, C.-Y., Chen, P.-L. Lin and C.-Y. Huang, 2010:Terrain
Effects on an Afternoon Heavy Rainfall Event, Observed over Northen Taiwan on 20
June 2000 during Monsoon Break. JMSJ, 88 ,649-671.
Chen, S.-H. and Y.-L. Lin, 2005: Effects of moist Froude number and CAPE on a
conditionally unstable flow over a mesoscale mountain ridge. J. Atmos.Sci., 62,
331-350.
Chen, S.-H., Yuh-Lang LIN and Zhan ZHAO,2008: Effects of Unsaturated Moist Froude
Number and Orographic Aspect Ratio on a Conditionally Unstable Flow over a
Mesoscale Mountain. JMSJ., 86, 353-367.
Chu, C.-M., and Y.-L. Lin, 2000: Effects of orography on the generation and propagation
of mesoscale convective systems in a two-dimensional conditionally unstable flow. J. Atmos. Sci., 57, 3817-3837.
Janjic, Z. I., 1996: The surface layer in the NCEP Eta model. Eleventh conference on
numerical weather prediction, Norfolk, VA, 19–23 August 1996; Amer. Meteor. Soc.,
Boston, MA, 354 – 355.
Janjic, Z. I.,2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in
the NCEP meso model. NCEP Office Note No.437, 61 pp.
Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/ detraining plume model
and its application in convective parameterization, J. Atmos. Sci.,47, 2784 – 2802.
Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models:
The Kain-Fritsch scheme. The Representation of Cumulus Convection in
Numerical Models, Meteor. Monogr., Amer. Meteor. Soc., 24, 165–170.
Lin, Y.-L., S. Chiao, T.-A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common
ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633–660.
Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, New York, 630 pp.
Michalakes, J., S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff,and W. Skamarock,
2001: Development of a next generation regional weather research and forecast
model. Developments inTeracomputing: Proceedings of the Ninth ECMWF
Workshop on the Use of High Performance Computing in Meteorology, W.
Zwieflhofer and N. Kreitz, Eds., World Scientific, 269–276.
Overland, J. E., and N. A. Bond, 1995: Observations and scale analysis of coastal
wind jet. Mon. Wea. Rev., 123, 2934-2941.
Skamarock, W. C., J. B. Klemp, and J. Dudhia, 2001: Prototypes for the WRF (Weather
Research and Forecasting) model. Preprints,Ninth Conf. on Mesoscale Processes, Ft.
Lauderdale, FL, Amer. Meteor. Soc., J11–J15.
Tao, W.-K., J Simpson, D Baker, S Braun, MD Chou, B Ferrier, D Johnson, A Khain,
S Lang, B Lynn, CL Shie, D Starr, CH Sui, Y Wang, and P Wetzel (2003),
Microphysics, radiation and surface processes in the Goddard Cumulus
Ensemble (GCE) model, Meteorology and Atmospheric Physics ,82, 97-137.
Wu, C.-C., Kevin K. W. Cheung, and Y.-Y Lo,2009: Numerical Study of the Rainfall
Event due to the Interaction of Typhoon Babs (1998) and the Northeasterly
Monsoon. Mon. Wea. Rev., 137, 2049-2064.
指導教授 陳景森(CHING-SEN CHEN) 審核日期 2011-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明