博碩士論文 986201008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.117.81.240
姓名 黃健瑋(Chien-Wei Huang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 2009-2010 年東沙背景站氣膠光學、輻射及來源之探討
(Optical, radiative, and source Characteristics of aerosols at Dongsha Atmospheric Background Station)
相關論文
★ 雲凝結核計數器的製作與測試★ 桃園地區硫沈降之觀測與模擬
★ 亞洲沙塵暴之模擬★ 不同空氣源次微米氣溶膠活化能力之探討
★ 桃園地區降水化學特性分析★ 鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估
★ 桃園地區降水化學與硫化物清除係數探討★ 亞洲沙塵好發期間雲水化學特性分析
★ 光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化★ 2001年東亞硫沉降之模擬
★ 亞洲生質燃燒氣膠對區域大氣輻射之衝擊及對氣象場的反饋作用★ 鹿林山與中壢氣膠光學垂直特性之監測與比較
★ 北台灣冬季層狀雲化學特性分析★ 鹿林山空氣品質背景監測站之背景值分析
★ 微脈衝光達及太陽輻射儀之應用: 2005-2007年中壢地區氣膠光學垂直特性分析★ 多重濾鏡旋轉輻射儀與太陽輻射儀之應用: 2006-2008年鹿林山氣膠光學特性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究為利用太陽輻射儀(CIMELs) 與多重濾鏡旋轉輻射儀(MFRSR) 於2009年9月至2010年8月在東沙空氣品質背景測站(5 m;20.70°N,116.73°E)之觀測,探討氣膠光學特性。季節分析顯示氣膠光學厚度(AOD500nm)和Angstrom exponent 高值主要發生在春季(3-5月),推論受長程傳輸的生質燃燒氣膠影響為主。特別地,二月Angstrom exponent 平均已達1.6,配合MODIS衛星觀測火點分布資料,可知二月東南亞已有明顯生質燃燒情形,此影響之時間點與觀測結果吻合。
進一步分析氣膠單次散射反照率(Single Scattering Albedo, SSA)、不對稱性因子(Asymmetry Factor)及細微粒氣膠比例(Fine Mode Fraction, FMF),結果顯示東沙背景站以細粒氣膠為大多數,且具有生質燃燒/城市污染來源氣膠特性。HYSPLIT 氣流後推軌跡分析顯示近地面(1000hPa)空氣塊來源為中國東北、日韓及菲律賓;中高層(700hPa)受盛行西風主要來自中南半島,少部分來自中國及菲律賓。整年輻射驅動力平均為-45 Wm-2,受沙塵與生質燃燒/城市污染影響平均分別為-105Wm-2 與-66Wm-2。除此之外,
本研究期間發生二十年來影響台灣最大之沙塵事件(2010/3/21-23),其影響範圍遠達南中國海,此期間觀測Angstrom exponent440-870nm 和FMF 分別為0.4-0.9和0.3-0.5,受沙塵暴影響具有粗粒徑顆粒氣膠特徵。本研究雖僅提出一年之觀測資料進行分析,然而,此研究為第一次於南中國海的氣膠光學特性研究,強調其季節變化特性,以及多元氣膠來源(包括人為、生質燃燒和沙塵),可做為區域氣候變遷的先期研究。
摘要(英) Simultaneous measurements of a multi-filter rotating shadowband radiometer (MFRSR) and a Cimel’s sunphotometer (CIMELs) were conducted at Dongsha Island (5 m AMSL; 20.70°N, 116.73°E) in the South China Sea from September 2009 to August 2010. This is the first research to study the aerosol optical properties over the South China Sea, focusing on seasonal variation and source-receptor relationships. The values of AOD500nm and Angstrom exponent were relatively high in spring (March-May), suggesting the influence of fine particles released from biomass burning emissions in the IndoChina Peninsula. Particularly, Monthly mean Angstrom exponent value in February had been for 1.6,
coordinate with the MODIS fire detection data and images showed that a large number of biomass burning events were occurring in the Southeast Asia between February, and may coinciding with the results of our observations.
Results of the single scattering albedo (SSA), Asymmetry Factor, and the fine mode fraction (FMF) analyses showed that fine particles dominated at Dongsha, carrying aerosol properties of biomass burning and urban pollution origins. Backward trajectory analysis indicated that the surface level (1000hPa) air masses were mainly from Northeast China, Japan, Korea and Philippine, On the other hand, due to the influence of prevailing westerlies, the upper level (700hPa) air masses were mainly from the IndoChina Peninsula. A massive dust storm event was observed at Dongsha in 2010/3/21-23. During this dust storm event, the Angstrom exponent440-870nm and FMF were 0.4-0.9 and 0.3-0.5, respectively, indicating the characteristics of coarse dust particles.
關鍵字(中) ★ 單次散射反照率
★ 氣膠光學厚度
★ 輻射驅動力
關鍵字(英) ★ Single Scattering Albedo
★ Radiative Forcing
★ Aerosol Optical Depth
論文目次 摘要 ...... I
目錄 ..... V
表目錄 . VIII
圖目錄 ... IX
第一章 前言....... 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻回顧 ...... 5
2.1 氣膠之輻射效應 .... 5
2.2 氣膠光學之特性 .... 7
2.3 亞洲地區氣膠之研究 .. 10
2.3.1 沙塵暴 10
2.3.2 生質燃燒 .... 11
2.4 海洋性氣膠之研究 ...... 12
第三章 研究方法 .... 14
3.1 研究架構 ...... 14
3.2 觀測時間與測站介紹 .. 14
3.3 實驗設備與觀測原理 .. 16
3.3.1 太陽輻射儀 16
3.3.2 多重濾鏡旋轉輻射儀 17
3.4 氣膠光學特徵參數 ...... 18
3.4.1 氣膠光學厚度 .... 18
3.4.2 Ångström exponent (?) ....... 19
VII
3.4.3 單次散射反照率 19
3.4.4 不對稱性因子 .... 20
3.4.5 細微粒氣膠比例 21
3.5 輻射驅動力 .. 22
第四章 結果與討論 ...... 23
4.1 亞洲地區污染排放之氣膠來源探討 . 24
4.2 東沙背景站氣膠光學特性之統計分析 ..... 26
4.2.1 不同儀器觀測資料之差異來源探討 26
4.2.2 東沙背景站氣膠光學特性之相對頻率分布 ... 28
4.2.3 月帄均與季節變化 .... 30
4.2.4 日變化 33
4.3 氣流軌跡來源分類 ...... 34
4.4 氣膠輻射特性分析 ...... 37
4.5 東沙背景站氣膠對光學厚度之貢獻量估計 ..... 38
4.6 個案分析 ...... 41
4.6.1 城市工業污染個案 .... 41
4.6.2 生質燃燒個案 .... 42
4.6.3 沙塵個案 .... 44
第五章 結論與未來展望 47
5.1 結論 ...... 47
5.2 未來展望 ...... 50
參考文獻 ... 52
參考文獻 林和駿,林博雄及劉紹臣(2005), 台灣南北城市氣膠光學厚度的特徵
中華民國國際氣膠科技研討會,203-212。
林能暉、黃景祥及彭啟明(2001), 空氣品質異常偶發事件之認定及評
估,EPA-90-FA11-03-90D014,行政院環境保護署。
吳承翰(2002), 亞洲沙塵暴之模擬。國立中央大學大氣物理研究所碩
士論文,中壢。
徐睿鴻(2007), 鹿林山與中壢氣膠光學垂直特性之監測與比較。國立
中央大學大氣物理研究所碩士論文,中壢。
郭俊江(2006), 光達及太陽輻射儀之應用:2005 年中壢氣膠光學垂
直特性及邊界層高度之變化。國立中央大學大氣物理研究所碩
士論文,中壢。
賈浩平(2008), 為脈衝光達及太陽輻射儀之應用:2005-2007 年中壢
地區氣膠光學垂直特性分析。國立中央大學大氣物理研究所碩士
論文,中壢。
張廷豪(2009), 多重濾鏡旋轉輻射儀與太陽輻射儀之應用:
2006-2008 年鹿林山氣膠光學特性之探討。國立中央大學大氣 物理研究所碩士論文,中壢。
Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V.
Ramanathan, and E. J. Welton (2000), Reduction of tropical
cloudiness by soot, Science, 288, 1,042-1,047.
Andreae, M. O., C. D. Jones, and P. M. Cox (2005), Strong present-day
aerosol cooling implies a hot future, Nature, 435, 1,187-1,190.
Bates, T. S., et al. (2006), Aerosol direct radiative effects over the
northwest Atlantic, northwest Pacific, and north Indian oceans:
Estimates based on in-situ chemical and optical measurements and
chemical transport modeling, Atmos. Chem. Phys., 6, 1657– 1732.
Chan, L.Y., H. Y. Liu, K. S. Lam, T. Wang, S. J. Oltmans, J. M. Harris
(1998), Analysis of the seasonal behavior of tropospheric ozone at
Hong Kong. Atmos. Environ., 32, 159-168.
Chou, M.D., P.H., Lin, P.L. Ma, and H.J. Lin (2006), Effects of aerosols
on the surface solar radiation in a tropical urban area. J. Gerphys.
Res, 111, D15207, doi:10.1029/2005JD006910.
Chylek, P., and J. Wong (1995), Effect of absorbing aerosols on global
radiation budget, Geophys. Res. Lett., 22, 929-931.
de Leeuw, G., F. Neele, M. Hill, M. Smith, and E. Vignati (2000),
Production of sea-spray aerosol in the surf zone, J. Geophys. Res.,
105, 29,397-29,409.
Du, W.P., J.Y. Xin, M.X. Wang, Q.X. Gao, Z.Q. Li, and Y.S. Wang
(2008), Photometric measurements of spring aerosol optical
properties in dust and non-dust periods in China, Atmos. Environ.,
42, 7,981-7,987.
Dubovik, O., and M. D. King (2000), A flexible inversion algorithm
for retrieval of aerosol optical properties fromSun and sky radiance
measurements, J. Geophys. Res., 105, 20,673–20,696, doi:10.1029/
2000JD900282.
Dubovik, O., B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D.
King, D. Tanre, and I. Slutsker (2002a), Variability of absorption
and optical properties of key aerosol types observed in worldwide
locations, J. Atmos. Sci., 59, 590–608, doi:10.1175/
1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.
Dubovik, O., B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko,
P. Yang, and I. Slutsker (2002b), Non‐spherical aerosol retrieval
method employing light scattering by spheroids, Geophys. Res. Lett.,
29, 1415, doi:10.1029/2001GL014506.
Dubovik, O., et al. (2006), Application of spheroid models to account
for aerosol particle nonsphericity in remote sensing of desert dust, J.
Geophys. Res., 111, D11208, doi:10.1029/2005JD006619.
Eck, T. F., B. N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H. B.
Chen, B. Chatenet, L. Gomes, X.-Y. Zhang, S.-C. Tsay, Q. Ji, D.
Giles,and I. Slutsker (2005), Columnar aerosol optical properties at
AERONET sites in central eastern Asia and aerosol transport to the
tropical mid-Pacific, J. Gerphys. Res., 110, D06202,
doi:10.1029/2004JD005274.
Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate
response, J. Geophys. Res., 102, D6, 6,831–6,864.
Hansen, J., T. Bond, B. Cairns, H. Gaeggler, B. Liepert, T. Novakov, and
B. Schichtel (2004), Carbonaceous aerosols in the industrial era,
EOS, Trans. AGU, 85, 241-244.
Harrison, L., J. Michalsky and J. Berndt (1994), Automated multifilter
rotating shadow-band radiometer: an instrument for optical depth
and radiation measurements, Applied Optics, 33, 5,118-5,125.
Haywood, J., D. Roberts, A. Slingo, J. Edwards, and K. Shine (1997),
General circulation model calculations of the direct radiative forcing
of tropospheric sulfate and fossil-fuel aerosol, J. Clim., 10,
1,562-1,577.
Haywood, J. M., O. Boucher (2000), Estimates of the direct and indirect
radiative forcing due to tropospheric aserosol: a review. Reviews of
Geophysics, 38, 513-543.
Intergovernmental Panel on Climate Change (IPCC) (2001), Climate
Change 2007: Technical Summary, edited by F. Joos et al.,
Cambridge Univ. Press, New York.
Jacobson, M. Z. (2000), A physically-based treatment of elemental
carbon optics: Implications for global direct forcing of aerosols,
Geophys. Res. Lett., 27, 217-220.
Jacobson, M. Z. (2004), The short-term cooling but long-term global
warming due to biomass burning, J. Clim., 17, 2,909-2,926.
Kim, J.E., S.Y. Ryu, Z.H. He, and Y.J. Kim (2006), Spectral aerosol
optical depth variation with different types of aerosol at Gwangju,
Korea, Journal of Atmospheric and Solar-Terrestrial Physics,68,
1,609-1,621.
Liao, H. and H. Seinfeld (1998), Effect of clouds on direct aerosol
radiative forcing of climate, J. Geophy. Res., 103, 3,781-3,788.
Mallet, M., et al. (2008), Aerosol direct radiative forcing on Djougou
(Northern Benin) during the AMMA dry season experiment
(SOP_0), J. Geophys. Res., 113, D00C01, doi:10.1029/
2007JD009419.
Monahan, E. C. (1968), Sea spray as a function of low elevation wind
speed, J. Geophys. Res., 73, 1127–1137, doi:10.1029/
JB073i004p01127.
Moorthy, K. K., S. K. Satheesh, and B. V. K. Murthy (1997),
Investigations of marine aerosols over the tropical Indian Ocean, J.
Geophys. Res., 102, 18,827– 18,842.
N. Prats, V.E. Cachorro, M. Sorribas, S. Mogo, A. Berjon, C. Toledano,
A.M. de Frutos, J. de la Rosa, N. Laualinen, B.A. de la Morena
(2008), Columnar aerosol optical properties during ‘‘El Arenosillo
2004 summer campaign’’, Atmos. Environ., 42, 2,643-2,653.
Ogunjobi, K. O., Z. He, K. W. Kim, and Y. J. Kim (2004), Aerosol
optical depth during episodes of Asian dust storms and biomass
burning at Kwangju, South Korea, Atmos. Environ., 38, 1,313-1,323.
Pandithurai, G., R. T. Pinker, O. Dubovik, B. N. Holden, and T. O. Aro
(2001), Remote sensing of aerosol optical characteristics in sub-
Sahel, West Africa, J. Geophys. Res., 106, 28,347–28,356,
doi:10.1029/2001JD900234.
Perez, C., S. Nickovic, J. M. Baldasano, M. Sicard, F. Rocadenbosch, and
V. E. Cachorro, 2006, A long Saharan dust event over the western
Mediterranean:Lidar, Sun photometer observations, and regional
dust modeling, J. Geophys. Res., 111 , D15214,
doi:10.1029/2005JD006579.
Prospero, J. M. (1979), Mineral and sea salt aerosol concentrations in
various ocean regions, J. Geophys. Res., 84, 725– 731.
Radojevic, M., and K. S. Tan (2000), Impacts of biomass burning and
regional haze on the pH of rainwater in Brunei Darussalam.
Atmospheric Environment, 34 , 2,739-2,744.
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosefeld (2001b),
Aerosol, Climate, and Hydrological Cycle. Since, 294, 2,119-2,124.
Reid, J. S., H. Jonsson, M. Smith, and A. Smirnov (2001), Evolution
of the vertical profile and flux of large sea-salt particles in a coastal
zone. J. Geophys. Res., 106, 12,039-12,053.
Rosenfeld, D. (1999), TRMM observed first direct evidence of smoke
from forest fires inhibiting rainfall, Geophys. Res. Lett., 26,
3,105-3,108.
Russell, P. B., P. V. Hobbs, and L. L. Stowe (1999), Aerosol properties
and radiative effects in the United States east coast haze plume: An
overview of the Tropospheric Aerosol Radiative Forcing
Observational Experiment (TARFOX), J. Geophys. Res., 104,
2,289-2,307.
Smirnov, A., B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck,
I. Slutsker, C. Pietras, and R. N. Halthore (2002), Optical properties
of atmospheric aerosol in maritime environments, J. Atmos. Sci., 59,
501–523, doi:10.1175/1520-0469(2002)059 <0501:OPOAAI>2.0.
CO;2.
Trentmann, J., M. O. Andreae, H. F. Hobbs, R. D. Ottmar, T. Trautnmann
(2002), Simulation of a biomass-burning plume: Comparison of model
results with observations. J. Geophys. Res., 107, AAC 5-1 – 5-15.
Vignati, E., G. de Leeuw, and R. Berkowicz (2001), Modeling coastal
aerosol transport and effects of surf-produced aerosols on processes
in the marine boundary layer, J. Geophys. Res., 106, 20,225-20,238.
Vinoj, V., S. K. Satheesh, and K. K. Moorthy (2010), Optical, radiative,
and source characteristics of aerosols at Minicoy, a remote island in
the southern Arabian Sea, J. Geophys. Res., 115, D01201.
Wang, S. H., N. H. Lin, M. D. Chou, and J. H. Woo (2007), Estimate of
radiative forcing of Asian biomass-burning aerosols during the
period of TRACE-P, J. Geophys. Res., 112 , D10222
doi:10.1029/2006JD007564.
Woodcock, A. H. (1953), Salt nuclei in marine air as a function of
altitude and wind force, J. Atmos. Sci., 10, 366 – 371, doi:10.1175/
1520-0469 (1953)010<0366:SNIMAA>2.0.CO;2.
Yonemura, S.,H. TSURUTA,T. Maeda, S. Kawashima, S. Sudo, M.
Hayashi (2002), Tropospheric ozone variability over Singapore from
August 1996 to December1999. Atmospheric Environment, 36,
2,061-2,070.
Yu, H., R. E. Dickinson, M. Chin, Y. J. Kaufman, M. Zhou, L. Zhou, Y.
Tian, O. Dubovik, and B. N. Holben (2004), Direct radiative effect
of aerosols as determined from a combination of MODIS retrievals
and GOCART simulations, J. Geophys. Res., 109, D03206.
指導教授 林能暉(Neng-Huei Lin) 審核日期 2011-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明