博碩士論文 986203011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.221.139.146
姓名 王彥鈞(Yan-Chun Wang)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 北極地環流區反照率與可降水含量關係之探討
(Discuss relationship between albedo and atmospheric precipitable water in the Arctic Polar Cell)
相關論文
★ 應用多時期MODIS衛星影像分析於蒙古地區整合型乾旱強度指標之研究★ WVR、GPS及氣球探空觀測可降水量之比較
★ GPS斷層掃描估算大氣濕折射係數模式★ GPS觀測大氣閃爍之研究
★ GPS 氣象中地面氣象模式之改進★ 由GPS信號反演大氣濕折射度之數值模擬
★ 近即時GPS觀測可降水技術之研究★ 利用水氣資訊改善降水估計之研究
★ GPS掩星觀測反演與反演誤差探討★ 微波輻射計數位相關器之設計與實現
★ GPS與探空氣球資料觀測可降水量 與降雨之關係★ 利用GPS訊號估算對流層斜向水氣含量之研究
★ 利用遙測影像反演水稻田蒸發散量 之研究★ 利用MODIS影像反演嘉義地區水稻田蒸發散量之研究
★ 利用MODIS影像於水稻田蒸發散之研究★ 分析以全球定位系統近即時估計可降水之可行性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,全球暖化議題成為世人關注的焦點後,北極海冰的融冰便成為科學家研究探討的對象。由於北極海冰的變化對氣候的改變具有高度的敏感性,它可以調節地表吸收太陽的能量,進一步影響海洋大氣間的動量、潛熱及化學組成,故針對北極海冰變化的監測,有助於瞭解氣候潛在因子變動之因果關係。據研究顯示,反照率正回饋現象、大氣可降水含量等均是影響北極地區氣候變化的重要因素;因此,本研究之主要目的係探討北極冰反照率正回饋作用,對北極地環流區可降水分佈的影響,以及瞭解此狀況與氣候變化的關係。
本研究分析所使用的研究材料概分為兩類,分別是搭載於美國國防氣象衛星計畫(Defense Meteorological Satellite Program, DMSP)上的SSM/I(Special Sensor Microwave/Imager)微波輻射計資料,以及美國環境預報中心(National Centers for Environmental Prediction, NCEP)和國家大氣研究中心(National Center for Atmospheric Research, NCAR)的再分析資料。由觀測資料發現,海冰面積在1989-1996年間,處於一個振盪平衡狀態,而在1997-2007年間,則處於冰反照率正回饋狀態。分析時係將分佈區域與氣候因子間的關係,作交叉性及綜合性的比較探討;在區域的分布上,本研究將研究區之北緯60到90度分為6個區域,並比較前述個時期之氣候因子在不同地域和季節的分佈狀況及因果關係。
依研究分析之結果顯示,在不同季節中,當反照率處於正回饋作用時,無論海洋或陸地區域之可降水含量在夏季時明顯增加;而冬季地域性的分析顯示,在海洋上的可降水受到正回饋作用,有增加的趨勢;惟在斯堪地納維亞半島和洛磯山脈地表上之可降水,則低於正回饋作用前,推斷可能原因係北極振盪(Arctic Oscillation, AO)在此階段處於負相位,造成寒冷氣流南下,帶走大氣中的可降水含量所致。
綜上顯示,北極地環流區之反照率正回饋作用對該區域之海冰面積、溫度及可降水含量的關係變化,產生明顯的影響性;並隨著近年來氣候暖化之影響,呈現劇烈變化,殊值持續觀測。
摘要(英) In recent years, after most of the focus of the world attention on global warming, the Arctic sea ice melting condition has become main research issue for scientists. Sea ice in the Arctic is very sensitivity to climate changes. It can help regulate the amount of incoming and insolation absorbed by the earth and exchanges momentum, heat, and chemical constituents between the atmosphere and the ocean. Therefore, monitoring for the changes of the Arctic sea ice will help us to comprehend the causation of climate change of potential factors. According to researches, the phenomenon of positive ice-albedo feedback and atmospheric precipitable water are important factors to affect climate changes in the Arctic region. Therefore, the main purpose of this study is to analyze how the positive ice-albedo feedback to affect the distribution of precipitable water on the Arctic Polar Cell.
The research data used in this study has been divided into two categories, namely, the Special Sensor Microwave/Imager (SSM/I) microwave radiometer data that is onboard the Defense Meteorological Satellite Program (DMSP) satellite and the NCEP/NCAR reanalysis data. By the observation, sea ice area in the years of 1989 to 1996 was in an oscillatory equilibrium state, while the years of 1997 to 2007 was in a positive ice-albedo feedback state. On analysis that will discuss the relationship between the distribution of precipitation on the Arctic Polar Cell and climatic factors by comprehensive and comparative studying. In this study, we divided the distribution of precipitation on the Arctic Polar Cell into 6 areas in latitude from 60 -90 degrees, and compares the results with previous periods of climatic factors in different geographical and season distribution.
According to the results of the analysis, in the different seasons, when positive ice-albedo feedback is active, both marine and terrestrial area of precipitable water increased significantly in the summer, and regional analysis shows that precipitable water has increased trend at marine in winter by positive ice-albedo feedback effect. However, precipitable water in the Scandinavia and the Rocky Mountains are less than before the period of positive ice-albedo feedback. The possible cause is that the Arctic oscillation system (AO) was in the negative phase at this stage, resulting in cold air southward and taking away atmospheric water vapor. To sum up the previous results, it shows that positive ice-albedo feedback in the Arctic Polar Cell has significant effected upon sea ice area, temperature, precipitable water, and with the impact of climate warming in recent years that is showing dramatic changes, thus, it’s a special issue that worth to observe consistently in the future.
關鍵字(中) ★ SSM/I
★ 冰反照率正回饋機制
★ 可降水含量
★ 北極海冰
關鍵字(英) ★ Arctic Sea Ice
★ SSM/I
★ Precipitable Water(PW)
★ Positive Ice-albedo Feedback
論文目次 摘要 I
Abstract III
誌 謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1研究背景 1
1-2研究動機與目的 2
1-3論文章節架構 3
第二章 理論簡介與衛星儀器介紹 4
2-1北極氣候因子討論 4
2-2被動式微波輻射計SSM/I 10
第三章 研究方法 14
3-1研究區域概述 14
3-2研究資料特徵 16
3-3資料處理 19
3-4實驗分析步驟 22
第四章 結果分析與討論 27
4-1 北極地環流區各相關因素探討 27
4-2北極地環流區可降水含量分布區域之探討 34
第五章 結論與未來展望 54
5-1結論 54
5-2未來展望 56
參考文獻 57
參考文獻 Aagaard, K., and E. C. Carmack, 1989:The Role of Sea Ice and Other Fresh Water in the Arctic Circulation, Journal of Geophysical Research, 14485-14498.
Andreas, E. L., P. G. Peter, and W. F. Christopher, W. H. Thomas, E. M. Richard, R.S. Steven, 2002:Near-surface water vapor over polar sea ice is always near ice saturation, Journal of Geophysical Research, 8033.
Comiso, J. C., C. L. Parkinson, R. Gersten, L. Stock, 2008:Accelerated decline in the Arctic sea ice cover, Geophysical Research Letters, L01703.
Comiso, J. C., and C. L. Parkinson, 2004:Satellite observed changes in the Arctic, Phys. Today, 57(8), 38 – 44.
Curry, J. A., and E. E. Ebert, 1992:Annual cycle of radiative fluxes over the Arctic Ocean: Sensitivity to cloud optical properties. J. Climate, 1267–1280.
Curry, J. A. and, J. L. Schramm, 1995:Water vapor feed back over arctic ocean, Journal of Geophysical Research, 14,223-14,229.
Curry, J. A., 1995:Interactions among aerosols, clouds and climate of the Arctic Ocean. The Science of the Total Environment, 777–791.
Curry, J. A. and J. L. Schramm, 1994:Sea Ice-Albedo Climatem Feedback Mechanism, Journal of Climate, 240-247
.
Curry, J. A. and J. L. Schramm, 1997:Modeling the thermodynamics of a distribution of sea ice thickness. Part II: Sea ice/ocean interactions. Journal of Geophysical Research, 102, 23 093–23 107.
Ebert, E. E, and J. A. Curry, 1993:An intermediate one-dimensional sea ice model for investigating ice-climate interactions. Journal of Geophysical Research,10 085–10 109.
Emery W. J., C. Fowler , and J. Maslanik, 1994:Arctic sea ice concentrations from special sensor microwave imager and advanced very high resolution radiometer satellite data, Journal of Climate, 18,329-18,342.
Haarpaintner, J., G. Marcos, 2007:Use of Enhanced-Resolution QuikSCAT/ SeaWinds Data for Operational Ice Services and Climate Research: Sea Ice Edge, Type, Concentration, and Drift, Norut IT, Tromso, 3131 - 3137.
Hartmann, Dennis L., 1994:Global Physical Climatology 56. Academic Press.
Kathy, S. L. , and Andreas S., 2007:Arctic Air Pollution: Origins and Impacts, Science, 1537-1540.
Lindsay, R. W., and J. Zhang, 2005:The Thinning of Arctic Sea Ice, 1988-2003: Have We Passed a Tipping Point?, Journal of Climate, 4879-4894.
Marika, M. H., Cecilia M. B., JULIE L. S., 2005:Influence of the Sea Ice Thickness Distribution on Polar Climate in CCSM3, Journal of Climate, 2395-2414.
Mark, C. S., and G. B. Roger, 1995:Atmospheric Water Vapor Characteristics at 70N, Journal of Climate, 719-731.
Meier, W. N., J. Stroeve, and F. Fetterer, 2007:Whither Arctic sea ice? : A clear signal of decline regionally, seasonally, and extending beyond the satellite record, Ann. Glaciol., 46, in press.
Overland, J. E., M. Wang, 2005:The Arctic climate paradox: The recent decrease of the Arctic Oscillation, Geophysical Research Letters, L06701.
Pinto, J. O. and J. A. Curry, 1997:ole of radiative transfer in the modeled mesoscale development of summertime Arctic stratus. Journal of Geophysical Research, 102, 13 861–13 872.
Rothrock, D. A., Y. Yu, G. A. Maykut, 1999:Thinning of the Arctic sea‐ice cover, Geophysical Research Letters, 3469-3472.
Schramm, J. L., M. M. Holland, and J. A. Curry, 1997:Modeling the thermodynamics of a distribution of sea ice thickness: 1 JUNE 2006 Hollandetal. 2413Part I. Model description and validation. Journal of Geophysical Research, 23079–23091,.
Serreze, M. C., P. B. Andrew, G. S. Andrew, A. W. Rebecca, K. Aagaard, B. L. Richard, S. Michael, R. Moritz, 2006:The large-scale freshwater cycle of the Arctic, Journal of Geophysical Research, C11010.
Spreen, G., L. Kaleschke, G. Heygster, 2008:Sea Ice Remote Sensing Using AMSR-E 89 GHz Channels, Journal of Geophysical Research, C02S03.
Stroeve, J., M. M. Holland, W. Meier, T. Scambos, M. Serreze, 2007:Arctic sea ice decline: Faster than forecast, Geophysical Research Letters, L09501, 5 PP.
Walter, M. N., J. Stroeve, 2007:Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record, Annals of Glaciology, 428-434.
Wang, X., and R. K. Jeffery, 2005:Arctic Surface, Cloud, and Radiation Properties Based on the AVHRR Polar Pathfinder Dataset. Part I: Spatial and Temporal Characteristics, Journal of Climate, 2558-2574.
Wentz, F. J., 1995:A Well Calibrated Ocean Algorithm for SSM/I, Remote Sensing Systems, Santa Rosa, CA 95404.
指導教授 劉說安(Yuei-An Liou) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明