博碩士論文 986204009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.147.47.167
姓名 洪秋香(Chiou-Shiang Hung)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢
(Using MODFLOW Associated with SUB Package to Predict Vertical Average of Long-Term Land Subsidence in Yunlin.)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 高雄平原地區抽水引致汙染潛勢評估★ 利用自然電位法監測淺層土壤入滲歷程
★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究★ 臺灣西部沿海海水入侵與地下水排出模擬分析
★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析
★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為★ 三維離散裂隙網路水流與溶質傳輸模式發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 根據經濟部水利署統計資料,雲林地區地下抽水井口數超過十萬口以上,近幾十年來,由於養殖漁業、工業、民生、灌溉用水量的大幅增加,雲林沿海地區的大量抽取地下水行為導致沿海地區地下水位持續下降,加上雲林地區雨量豐枯差異極大,以致地層下陷情形日益嚴重,最近的觀測結果顯示:持續的抽水行為亦造成地層下陷中心有往內陸移動的趨勢,並危及到地面結構物及公共設施結構使用上之安全。為了解雲林地區之地層下陷趨勢,本研究利用A modular three-dimensional finite-difference ground-water flow model(MODFLOW)數值模式配合Subsidence and Aquifer-System Compaction (SUB)套件推估雲林地區長期地層下陷趨勢,主要研究重點包括:(1) 地下水流模式建立與水流參數率定;以MODFLOW建立三維地下水流模式,配合經濟部水利署的觀測水位,率定雲林地區地下水流模式,使用1998年至2003年及2005至2009年地下水觀測站網水位,進行含水層參數率定;(2) 地層下陷模式建立與壓密參數敏感度分析;配合SUB套件建立地層下陷模式,以初始壓密參數的0.1、0.2及2倍等倍數進行敏感度分析;(3) 壓密參數率定與三種長期地層下陷趨勢情境分析;以經濟部水利署提供19口雲林地區地層下陷監測井資料,率定雲林地區相關的含水層壓密係數,將研究區域分為5區,依據岩心資料取得黏土分佈之垂向平均厚度以地層下陷監測井2002年到2009年地層下陷資料率定壓密參數,由驗證後模式再討論抽水條件下的三種情境分析。模擬結果顯示:(1) 觀測年平均水位與計算水位的平均絕對百分比誤差率(MAPE)是3.28%,而均方根誤差(RMSE)則是4.84。(2) 壓密參數中垂直水力傳導係數(K_v^’’)與彈性儲蓄係數(Ske)對於地層下陷曲線變化與地層下陷量敏感度較高;參數率定選用的6口監測井與模擬結果相近。(3) 以率定後參數保持現況持續抽水,地層下陷曲線會趨緩,但後期可能有0.1至0.2公尺地層下陷量;空間分佈上沿海地區地層下陷量隨時間增加,較大地層下陷區發生在低水頭區,雖然20年暫態應力期後水頭無明顯變化,但地層下陷量仍持續增加,甚至已影響至雲林內陸地區。若考慮抽水條件變異情境,亦即,於5與10年後全區停止抽水的兩種測試情境,停抽10年後地層下陷量明顯減少(或回彈)至0.1公尺,顯示此時期有效應力仍低於前期預壓密應力,模式主要以彈性壓密行為進行計算。其中土庫國中與客厝國小地層下陷量降低約0.25公尺;海豐分校、豐安國小及金湖國小降低約0.15公尺,而元長國小反應幅度最大,降低約0.4公尺。第三類情境是加大抽水量持續抽水,分別選用有效應力小於及大於預壓密應力時停抽。當停抽時位彈性壓密階段,25年後地層下陷量可回復至0.8公尺;若停抽時已位於地層過壓密階段,停抽15年後地層下陷量雖會降低,仍有約1.5公尺的下陷量。
摘要(英) According to the Water Resources Agency, there are more than one hundred thousand groundwater pumping wells in Yunlin area, in central Taiwan. In recent decades, the increasing pumping of groundwater for fish farming, industry, household and agriculture causes the decline of groundwater level in coastal area here. Moreover, the great difference of available water resources in wet and dry seasons lead to highly demand of groundwater resource and result in serious land subsidence. Recent observation also indicate that the center of land subsidence moves inland from the coast area due to the continuous pumping of groundwater. Such land subsidence may harm the sustainability of public constructions. To predict the long-term variations of subsidence in Yunlin area, this study employs a modular three-dimensional finite-difference ground-water flow model(MODFLOW) associated with Subsidence and Aquifer-System Compaction (SUB) package to build physical-based numerical model for groundwater flow and land subsidence. This study divides into three major terms: (1) Using MODFLOW to build the three-dimensional groundwater flow model and calibrate the model based on the water level observations from Water Resources Agency. Such long-term groundwater levels are from 1998 to 2003 and from 2005 to 2009. (2) Building a land subsidence model with SUB modulus, and investigates the sensitivity of the consolidation parameters by increasing or decreasing 0.1, 0.2, and 2 times of selected parameters in baseline case, (3) calibrating the aquifer consolidation parameters based on nineteenth multi-level compaction monitoring wells from Water Resources Agency, and analyzing the impacts of land subsidence on three different pumping scenarios in Yunlin area. Results show that: (1) the calibrated model obtains the root mean square error (RMSE) of 4.84 and average absolute percentage error rate (MAPE) of 3.28%. (2) The vertical hydraulic conductivity(K_v^’’) and elastic skeletal storage coefficient(Ske) in the clay layer are the high sensitivity parameters for the accumulated land subsidence. The simulated land subsidence show solutions similar with the selected multi-level compaction monitoring wells. (3) Continuous pumping will result in 0.1 and 0.2 meters of subsidence in amount in the later period. Although the groundwater head has no obvious change in the stress period after 20 years, the values of land subsidence increase gradually and continuously. Three pumping scenarios are employed to assess the long-term effects of pumping events on the land subsidence in Yunlin area. The results of first two scenarios show that the values of land subsidence will recover 0.1 meters after 10 years if all the pumping events are stopped at the fifth and tenth years. Such result also indicate that the effective stress caused by pumping is still below the preconsolidation stress in the aquifer and the recovering procedures are mainly controlled elastic compaction. The recovery of land subsidence are about 0.25 meters at Tu Ku junior high school and Keh Tsuoh elementary school stations, and about 0.15 meters at Haifong District school station, Fengan and Chinhu elementary school stations. The Yuan Chang elementary school has greatest recovery about 0.4 meters. The result of third scenario show that the pumping induced effective stress less than the preconsolidation stress will result in 0.8 meters of difference from initial ground levels, while the pumping induced effective stress greater than the preconsolidation stress will lead to 1.5 meters of difference from initial ground levels.
關鍵字(中) ★ MODFLOW
★ 地層下陷
★ 預壓密應力
★ 數值模式
★ SUB套件
★ 含水層壓密係數
★ 有效應力
關鍵字(英) ★ SUB package
★ MODFLOW
★ land subsidence
★ aquifer compact coefficient
★ effective stress
★ numerical model
★ preconsolidation stress
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 x
符號表 xi
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 地層下陷機制探討 2
1.2.2 MODFLOW地下水流數值模式 3
1.2.3 地層下陷數值模式 4
1.3 研究目的 5
1.4 論文架構 6
第二章 研究區域概況 8
2.1 雲林地區水文地質概況 8
2.1.1 濁水溪沖積扇分層與雲林地區地下水位概述 9
2.2 雲林地區地層下陷情形概述 13
第三章 數值模式 19
3.1 MODFLOW模式介紹 19
3.1.1 MODFLOW套件(Package)介紹 20
3.1.2 地下水流方程式與有限差分方程式 21
3.1.3 迭代運算 28
3.2 壓密沉陷與 SUB模式理論 30
3.2.1 壓密沉陷 30
3.2.2 SUB模式理論 33
第四章 數值模式建立與分析 41
4.1 水流概念模式 41
4.2 MODFLOW模式參數輸入 42
4.3 水位率定資料整理 48
4.4 SUB模式參數輸入 48
4.5 地層下陷參數敏感度分析與率定設置 51
4.5.1 參數敏感度分析設置 51
4.5.2 參數率定設置 52
4.6 情境分析假設 55
第五章 結果與討論 56
5.1 水位率定結果 56
5.2 地層下陷參數敏感度分析與率定結果 58
5.2.1 參數敏感度分析結果 58
5.2.2 參數率定結果 63
5.3 情境分析結果 69
第六章 結論與建議 73
6.1 結論 73
6.2 建議 74
參考文獻 76
參考文獻 〔1〕 經濟部水利署網站, http://gweb.wra.gov.tw/
〔2〕 Bear, J. and Corapcioglu, M.Y., “Mathematical Model for Regional Land Subsidence Due to Pumping, 1. Intergrated Aquifer Subsidence Equations Based on Vertical Displacement Only” , Water Resources Research, Vol. 17, no. 4, pp. 937-946, 1981a.
〔3〕 Bear, J., and Corapcioglu, M.Y., “Mathematical Model for Regional Land Subsidence Due to Pumping, 2. Intergrated Aquifer Subsidence Equations for Vertical and Horizontal Displacements” , Water Resources Research, Vol. 17, no. 4, pp. 947-958, 1981b.
〔4〕 Wu, J.C., Shi, X.Q., Ye, S.J., Xue, Y.Q., Zhang, Y., and Yu, J., “Numerical simulation of land subsidence induced by groundwater overexploitation in Su-Xi-Chang area, Chain ”, Environmental Geology, Vol. 57, pp. 1409-1421, 2009.
〔5〕 單信瑜,羅文俊,陳明城,「台灣西部沿海砂質土壤變形對地層下陷之影響」,交通大學土木工程研究所,1999。
〔6〕 Wilson, A.M. and Gorelick, S., “The effects of pulsed pumping on land subsidence in the Santa Clara Valley, California”, Journal of Hydrology, Vol. 174(3-4), pp. 375-396, 1996.
〔7〕 Liu, C.H., Pan, Y.W., Liao, J.J., Huang, C.T., and Ouyang, S., “Characterization of land subsidence in the Choshui River alluvial fan, Taiwan”, Environmental Geology, Vol. 45(8), pp. 1154-1166, 2004.
〔8〕 柳志錫、楊秀隆、洪偉嘉、劉智超,「濁水溪沖積扇地層壓縮行為探討」,第七屆地下水資源及水質保護研討會,第E33-E42頁,2009。
〔9〕 Terzaghi, K. and Peck, R.B., “Soil Mechanics in Engineering Practice”, John Wiley and Sons, pp. 566, 1948.
〔10〕 McDonald, M.G. and Harbaugh, A.W., A modular three-dimensional finite-difference ground-water flow model, U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A1, 1988.
〔11〕 Rodriguez, L.B., Cello, P.A., Vionnet, C.A., and Goodrich, D., “Fully conservative coupling of HEC-RAS with MODFLOW to simulate stream–aquifer interactions in a drainage basin”, Journal of Hydrology, Vol. 353(1-2), pp. 129-142, 2008.
〔12〕 Carroll, W.H., Pohll, G.M., Earman, S., and Hershey, R.L., “A comparison of groundwater fluxes computed with MODFLOW and a mixing model using deuterium: Application to the eastern Nevada Test Site and vicinity”, Journal of Hydrology, Vol. 361(3-4), pp. 371-385, 2008.
〔13〕 Lautz, L.K. and Siegel, D., “Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D”, Advances in Water Resources, Vol. 29(11), pp. 1618-1633, 2006.
〔14〕 Kim, N.W., Chung, I.M., Won, Y.S., and Arnold, J.G.,“Development and application of the integrated SWAT–MODFLOW model”, Journal of Hydrology, Vol. 356(1-2), pp. 1-16, 2008.
〔15〕 Osman, Y.Z. and Bruen, M.P.,“Modelling stream–aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW”, Journal of Hydrology, Vol. 264(1-4), pp. 69-86, 2002.
〔16〕 田巧玲、張炎銘、林維侃、蔡明坤,「濁水溪沖積扇之地下水水文概況」,濁水溪沖積扇地下水及水文地質研討會,第207-221頁,1996。
〔17〕 林君怡、葉明生、張良正、田巧玲、江崇榮,「濁水溪沖積扇地下水觀測站網評估」,濁水溪沖積扇地下水及水文地質研討會,第223-236頁,1996。
〔18〕 賴再壽,「濁水溪沖積扇地下水汲取之研究」,國立中正大學應用地球物理所碩士論文,2000。
〔19〕 林時猷,「以地下水位之區位相關性輔助濁水溪沖積扇地下水模擬之參數決定」,逢甲大學土木及水利工程研究所碩士論文,2003。
〔20〕 蔡清研,「濁水溪沖積扇整合模式下之MODFLOW地下水模擬研究」,國立中正大學應用地球物理所碩士論文,2007。
〔21〕 Don, N.C., Hang, N.T.M., Araki, H., Yamanishi, H., and Koga, K., “Groundwater resources and management for paddy field irrigation and associated environmental problems in an alluvial coastal lowland plain”, Agricultural Water Management, Vol. 84(3), pp. 295-304, 2006.
〔22〕 Leake, S.A. and Prudic, D.E., Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A2, pp. 68, 1991
〔23〕 劉志純、劉振宇、陳增壽、陳瑞昇,「抽水行為對雲林地區地層下陷之影響」,台灣水利季刊,第四十四卷,第四期,第15-25頁,農田水利會聯合會,1996。
〔24〕 Larson, K.J., Basagaolu, H., and Marino, M.A., “Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model”, Journal of Hydrology, Vol. 242(1-2), pp. 79-102, 2001.
〔25〕 陳建銘,「地層下陷模擬程序之建立與應用—以大城鄉西港地區為例」,國立成功大學土木工程所碩士論文,2005。
〔26〕 Kitching, R. and Shearer, T.R., “Modelling of subsidence due to groundwater extraction ”, British Geological Survey Technical Report, 1995.
〔27〕 張光仁,「台西麥寮地區多井抽水引致區域性地層下陷之分層分析」,國立台灣大學土木工程所碩士論文,2000。
〔28〕 康家桂,「以時間序列預測麥寮地區地層下陷之研究」,國立交通大學土木工程所碩士論文,2005。
〔29〕 Lewis, C.D., “Industrial and business forecasting methods”, Journal of Forecasting, Vol. 2(2), pp. 194-196, 1983.
〔30〕 Calderhead, A.I., Therrien, R., Rivera, A., Martel, R., and Garfias, J., “Simulation pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico”, Advances in Water Resources, Vol. 34(1), pp. 83-97, 2011.
〔31〕 Hoffmann, J., Leake, S.A., Galloway, D.L., and Wilson, A.M., MODFLOW-2000 Ground-Water Model—User Guide to the Subsidence and Aquifer-System Compaction (SUB) Package, Open-File Report 03-233, U.S. Geological Survey Ground-Water Resources, 2003.
〔32〕 Therrien, R., McLaren, R.G., Sudicky, E.A., and Panday, S.M., A Three-dimensional Numerical Model Describing Fully-integrated Subsurface and Surface Flow and Solute Transport, HygroGeoSphere, 2009.
〔33〕 陳肇夏、何信昌、謝凱旋、羅偉、林偉雄、張徽正、黃鑑水、林啟文、陳政恆、楊昭男、李元希,「台灣地質圖」,經濟部中央地質調查所,2000。
〔34〕 陳文福、江崇榮,「濁水溪扇州及鄰近地區之沉積物分布與沉積環境」,地質,第十八卷,第二期,第17-28頁,經濟部中央地質調查所,1999。
〔35〕 經濟部中央地質調查所,「台灣地區地下水觀測網第一期計畫濁水溪沖積扇水文地質調查研究總報告」,經濟部水資源局委託計畫,1999。
〔36〕 江崇榮、賴典章、黃智昭、賴慈華、陳利貞,「濁水溪沖積扇之水文地質與地下水系統概念模型」,濁水溪沖積扇地下水及水文地質研討會論文集,1996。
〔37〕 賴慈華、黃智昭,「台灣天然地下水庫的形成」,地質,第二十六卷,第四期。經濟部中央地質調查所,2007。
〔38〕 賴典章、費立沅、江崇榮,「台灣地區地下水分區特性」,水文地質調查與運用研討會論文集,2003。
〔39〕 雲林縣政府網站,「雲林縣綜合發展計畫第一次通盤檢討」,1993,http://gisapsrv01.cpami.gov.tw/。
〔40〕 財團法人工業技術研究院,「95年度彰雲地區地層下陷監測及分析計畫」,經濟部水利署,2007。
〔41〕 施國欽,大地工程學(一)土壤力學篇,文笙經銷,民國九十四年。
〔42〕 柳志錫,「複雜含水地層之抽水沉陷行為」,國立交通大學土木工程學系博士論文,2004。
〔43〕 Leake, S.A., “Interbed storage changes and compaction in models of regional ground-water flow”, Water Resources Research, Vol. 26(9), pp. 1939-1950, 1990.
〔44〕 Terzaghi, K., “Erdbaumechanic Auf Bodenphysikalisher Grundlage”, Franz Deuticke, Vienna, pp. 399, 1925.
〔45〕 Johnson, A.I., Moston, R.P., and Morris, D.A., “Physical and hydrologic properties of water-bearing deposits in subsiding areas in California”, U.S. Geological Survey Professional Paper, Vol. 497-A, pp. 71, 1968.
〔46〕 Riley, F.S., “Analysis of borehole extensometer data from central California”, International Association of Scientific Hydrology Publication, Vol. 89, pp. 423-431, 1969.
〔47〕 Jorgensen, D.G., “Relationships between basic soils-engineering equations and basic ground-water flow equations”, U.S. Geological Survey Water-Supply Paper, Vol. 2064, pp. 40, 1980.
〔48〕 Meade, R.H., “Removal of water and rearrangement of particles during the compaction of clayey sediments—review”, U.S. Geological Survey Professional Paper, Vol. 497-B, pp. 23, 1964.
〔49〕 Riley, F.S., Mechanics of aquifer systems—The scientific legacy of Dr. Joseph F. Poland, in Borchers, J.W., ed., Land subsidence case studies and current research: Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, Association of Engineering Geologists Special Publication, No. 8, pp. 13-27, 1998.
〔50〕 美國地質調查局網站,http://water.usgs.gov/。
〔51〕 江崇榮、黃智昭、陳瑞娥,「以地下水歷線分析法評估濁水溪沖積扇之地下水收支」,經濟部中央地質調查所彙刊,第十九號,第68-69頁,2006。
〔52〕 經濟部中央地質調查所網站, http://hydro.moeacgs.gov.tw/。
〔53〕 洪偉嘉,「應用多重感應器監測雲林地區三維變形」,國立交通大學土木工程所博士論文,2009。
〔54〕 侯伊浩,「應用地層下陷模式探討地下水位與地層下陷量相關性之研究」,國立成功大學資源工程所碩士論文,2010。
〔55〕 張誠信,「雲林地區地下水流之三維數值模擬」,國立台灣大學農業工程學系碩士論文,1996。
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明