博碩士論文 91642006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.83.87.94
姓名 江賢仁(Hsien-Jen Chiang)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 台灣高屏地區場址效應之探討與研究
(Analysis and study of site effect in Kaoshiung and Pingtung area)
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 高屏地區場址效應之探討
★ 以地震儀陣列及基因演算法推估近地表剪力波波速★ 臺灣中部地區強地動波形模擬
★ 利用接收函數法推估蘭陽平原淺層速度構造★ 蘭陽平原場址效應及淺層S波速度構造
★ 探討不同地質區強震站之淺層S波速度構造★ 震源破裂過程及地表強地動特性之陣列分析研究
★ 利用微地動探討桃竹苗地區之場址效應★ 利用微地動量測探討台灣中部地區之場址效應
★ 利用有限斷層法探討台北盆地之場址效應★ 利用微地動量測探討台北盆地之場址效應
★ 以恆春地震探討高屏地區之場址效應★ 利用隨機式震源模型探討蘭陽平原之場址效應
★ 利用時頻分析技術檢視土壤非線性反應★ 台灣潛勢地震之發生機率評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高雄市為臺灣地區的最大港都,第二大都市。近年來在高雄都會區大量的超高層建築及大眾交通建設(捷運系統、鐵路地下化工程)均已陸續動工,因此需要瞭解此地之地質條件。尤其在經歷過1999年的集集地震之後,為掌握高雄都會區在地震力作用下之地動特性,有必要進行有系統之調查研究。而剪力波速除為了解地工特性之重要參數,同時亦為研究地動特性所必需。
本研究利用六個大型微地動陣列量測求得深度三公里內淺部S波速度構造,而所求得的S波速度構造與利用懸盪式速度井測(P-S logging)所得之速度構造,其結果相當吻合。在地震減災方面,瞭解高雄屏東地區的土壤放大效應是相當重要的,本文使用三個建置完成之井下地震儀陣列及高密度的微地動量測,利用Nakamura(1989)所提出之單站頻譜比法進行場址效應之研究。經過仔細挑選後,共選取了705個微地動測點運算單站頻譜比值,並取不同頻率畫成放大倍率等值圖。高雄都會區及屏東平原在0.6~1.5Hz都呈現放大倍率高區,從2.0Hz放大高區開始往周圍丘陵區、山區移動。大於3.0Hz後,平原區則已經沒有明顯之放大倍率高區。從各站之單站頻譜比,選取其共振主頻並將其畫成主頻等值圖,高雄都會區及屏東平原其主頻約為0.6~2.0Hz,丘陵區、山區之主頻則在2.0Hz以上。而主頻之變化與沈積物之厚度有明顯之相關,比起利用工程鑽井資料所得之沈積物厚度,微地動結果可顯示出更細部之變化,充分顯現其方便性與經濟性。另外從單站頻譜比與速度構造計算其轉換函數之結果比較,Vs30常常不能反應出控制此區域主頻之沖積層厚度,使得比較之結果差異甚大。
2006年12月26號20點26分及20點34分,在屏東恆春外海相繼發生兩起芮氏規模7.0的地震,根據中央氣象局定位結果,地震震央分別位於墾丁地震站西南方38.4公里以及恆春地震站西方33.1公里。利用單站頻譜比法對KAU測站於恆春地震時進行非線性反應之探討,非線性反應區域,主要分佈在高屏沿岸地區,如屏東林邊、佳冬與新園一帶,林園靠高屏溪出海口,高雄市小港、前鎮等區,以及橋頭、彌陀與永安附近。而墾丁南灣地區於恆春地震發生時有發生土壤液化並造成一些災情,經單站頻譜比法分析後,南灣地區發生之土壤液化可能與區域地質條件有關,從觀測上也並無發現大範圍之土壤液化區域。
摘要(英) Kaohsiung city is the most important harbor and second large city in Taiwan. Recently, there are many high-rise buildings and public transportation system are under construction in this area. Therefore, it is very important to know the surface geological conditions for many practical reasons especially after the strikes of 1999 Chi-Chi, Taiwan earthquake. The shear wave velocity is a very important parameter in earthquake engineering problems and essential for studying earthquake characteristic.
This study estimates the S-wave velocity structures from the surface to a depth of 3 km by six microtremor arrays. The shallow S-wave velocities also compare well with which get by P-S logging. To serve the purpose of earthquake hazard mitigation, it would be better to understand the soil amplification effect of the Kaohsiung-Pingtung area. We then conducted a research to study the site effects of the area, which includes analyze three installed borehole seismometer arrays, and perform very dense microtremor measurements in the study area. After carefully selection, we pick 705 records and use the H/V ratio method to get information of soil amplification. In this study, we select several frequencies to plot out the contour map for understanding the frequency responses in this area. For the 0.6 ~ 1.5 Hz, the contours show that main amplification effects occurred at the southern part of Kaohsiung area and most Pingtung plain. With the frequency increasing to 2.0 Hz, the main amplification area move from the plain area to the hill area. For the higher frequency (3.0 Hz), there are no obvious high contour areas in the plain area. We pick the dominant frequency of each record and plot out the contour map. At the plain area, the dominant frequency is about 0.6 ~ 2.0 Hz, and the hill area is great than 2.0 Hz. We found that the basement structure can explain the contour very well. Yet, the H/V dominated frequency distribution map reveals more detail features. The Vs30 can’t exactly respond the site effects in the plain area stations.
On December 26, 2006 at 20:26 and 20:34, two successive earthquakes with the same magnitude 7.0 on the Richter scale occurred in the southeast Taiwan Strait near HengChun peninsula, with one epicenter approximately 38.4 km southwest of HEN station, and another is located in 33.1km west of NEN station. The H/V method is extended to identify nonlinear soil responses. From our result, we find most of the nonlinear soil response usually occurred in soft alluvial plain near shore area of Kau-Ping plain. The liquefaction site, Nanwan area, the phenomena of liquefaction was caused by the local refill soil of ground surface.
關鍵字(中) ★ 單站頻譜比法
★ 微地動
★ 場址效應
關鍵字(英) ★ microtremor
★ site effect
★ H/V method
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 研究內容簡介 4
第二章 高屏地區之區域地質構造與強地動觀測 6
2.1 區域地質構造 6
2.1.1 台南背斜、中洲背斜、半屏山背斜 6
2.1.2 屏東平原 7
2.1.3 旗山斷層 8
2.1.4 潮州斷層 8
2.2 強地動觀測 9
2.2.1 臺灣強地動觀測計劃(TSMIP) 9
2.2.2 井下地震儀陣列 10
第三章 淺部S波速度構造 23
3.1 前言 23
3.2 高屏地區微地動陣列量測 24
3.3 資料分析 26
3.3.1 頻率-波數法(F-K) 26
3.3.2 基因演算法(GA) 30
3.4 懸盪式速度井測(P-S Logger) 32
3.4.1 速度井測儀器介紹 32
3.4.2 速度井測資料處理 34
3.4.3 速度井測量測結果 35
3.5 地動特性模擬 37
第四章 高屏地區場址效應之研究 61
4.1 前言 61
4.2 高屏地區微地動量測 63
4.3 單站頻譜比分析 63
4.4 微地動場址特性 67
4.4.1 單站頻譜比值分析 67
4.4.2 共振主頻分佈圖 69
4.4.3 Kg液化潛能圖 71
4.5 單站頻譜比與速度構造 71
第五章 恆春地震場址效應之分析 105
5.1 前言 105
5.2 弱震平均場址效應 105
5.3 強震單站頻譜比與非線性探討 106
第六章 結論 119
6.1 綜合討論 119
6.2 未來展望 121
參考文獻 123
附錄 133
參考文獻 Aki, K., “Local site effects on strong motion”, Earthquake Engineering & Soil Dynamics II, Am. Soc. Civil Eng., 103-155, Park City, Utah, June 27-30, 1988.
Aki, K. and Chin, B. H., “Local site effects on weak and strong ground motion”, Int. sym. On Earthq. Disaster Prevention, Vol. I, 198-211, Mexico City, Mexico, 1992.
Aki, K. and Irikura K., “Characterization and mapping of earthquake shaking for seismic Zonation”, Proceedings of the 4th International Conference on Seismic Zonation, 61-110, Stanford, August 25-29, California, 1991.
Bard, P. Y., and Bouchon M., “The two-dimensional resonance of sediment-filled valleys”, Bull. Seism. Soc. Am., 75, 519-541, 1985.
Bard, P. Y., Campillo M., Chavez-Garcia F. J., and Sanchez-Sesma F. J., “The Mexico earthquake of September 19, 1985; A theoretical investigation of large- and small-scale amplification effects in the Mexico City valley”, Earthquake Spectra, 4, 609-633, 1988.
Beresnev, I. A., Wen, K. L., and Yeh, Y. T., “Nonlinear soil amplification: Its corroboration in Taiwan”, Bull. Seism. Soc. Am., 85, 496-515, 1995a.
Beresnev, I. A., Wen, K. L., and Yeh, Y. T., “Seismological evidence for nonlinear plastic ground behavior during large earthquakes”, Soil. Dyn. Earthquake Eng., 14, 103-114, 1995b.
Bonamassa, O., and Vidale J. E., “Directional site resonances observed from aftershocks of the 18 October 1989 Loma Prieta earthquake”, Bull. Seism. Soc. Am., 81, 1945-1957, 1991.
Bonilla, L. F., Steidl, J. H., Lindley, G. T., Tumarkin, A. G., and Archuleta, R. J., “Site amplification in the San Fernando Valley, California: variability of site-effect estimation using the S-wave, coda, and H/V method”, Bull. Seism. Soc. Am., 87, 710-730, 1997.
Borcherdt, R. D., “Effects of local geology on ground motion near San Francisco Bay”, Bull. Seism. Soc. Am., 60, 29-61, 1970.
Campillo, M., Gariel J. C., Aki K., and Sanchez-Sesma F. J., “Destructive strong ground motion in Mexico City; source, path, and site effects during great 1985 Michoacan earthquake”, Bull. Seism. Soc. Am., 79, 1718-1734, 1989.
Capon, J., “Investigation of long-period noise at the large aperture seismic array”, J. Geophys. Res., 74, 3182-3194, 1969a.
Capon, J., “High-resolution frequency-wavenumber spectrum analysis”, Proceeding of the IEEE, 57, 1408-1418, 1969b.
Chang, S. J., Baag C. E., and Langston C., “Joint analysis of teleseismic receiver functions and surface wave dispersion using the genetic algorithm”, Bull. Seism. Soc. Am., 94, 691-704, 2004.
Chang, C. Y., Power M. S., Tang Y. K., and Mok C. M., “Evidence of nonlinear soil response during a moderate earthquake”, Proc. 12th Int. Conf. Soil Mech. and Found. Eng. 3, 1927-1930, 1989.
Chang, C. Y., Mok C. M., Power M. S., Tang Y. K., Tang H. T. and Stepp J. C., “Equivalent linear versus nonlinear ground response analyses at Lotung seismic experiment site”, Proc. Of 4th U.S. National Conference on Earthquake Engineering, Vol. 1, 327-336, Palm Springs, California, 1990
Chang, C. Y., Mok C. M., Power M. S., Tang Y. K., Tang H. T. and Stepp J. C., “Development of shear modulus reduction curves based on Lotung downhole ground motion data”, Proc. 2nd Int. Conf. Recent Advances in Geotechnical Earthquake Eng. Soil Dyn., Paper No.1, 44, 111-118, 1991.
Ch?vez-Grac?a, F. J., Pedotti, G., Hatzfeld, D., and Bard, P. Y., “An experimental study of site effects near Thessaloniki (Northern Greece) ”, Bull. Seism. Soc. Am., 80, 646-654, 1990.
Chiang, S. C., “Seismic study of the Chaochou structure, Pingtung, Taiwan”, Petrol. Geol. Taiwan., 8, 281-294, 1971.
Chin, B. H. and Aki, K., “Simultaneous determination of source,path and recording site effects on strong ground motion during the Loma Prieta earthquake-a preliminary result on pervasive non-linear site effect”, Bull, Seism. Soc. Am., 81, 1859-1884, 1991.
Dravinski, M., Ding G., and Wen K. L., “Analysis of spectral ratios for estimating ground motion in deep basins”, Bull. Sei. Soc. Am., 86, 3, 646-654, 1996.
Esteva, L. “Microzoning: models and reality”, Proc. 6th World Congr. Earthquake Eng., (New Dehli), 1977.
Field, E. H., Hough, S. E., and Jacob, K. H., “Using microtremors to assess potential earthquake site response: a case study in Flushing Meadows” , Bull. Seism. Soc. Am., 80, 1456-1480, 1990.
Field, E. H. and Jacob K. H., “The theoretical response of sedimentary layers to ambient seismic noise”, Geophys. Res. Lett., 20, 2925-2928, 1993.
Field, E. H. and Jacob, K. H., “A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent”, Bull. Seism. Soc. Am., 85, 1127-1143, 1995.
Field, E. H., Jacob, K. H., and Hough, S. E., “Earthquake site response estimation: a weak-motion case study”, Bull. Seism. Soc. Am., 82, 2283-2306, 1992.
Goldberg, D. E., “Genetic algorithms in search, optimization, and machine learning”, Addison-Wesley, 412, 1989.
Hanks, T. C., and Brady A. G., “The Loma Prieta earthquake, ground motion, and damage in Oakland, Treasure Island, and San Francisco”, Bull. Seism. Soc. Am., 81, 2019-2047, 1991.
Haskell, N. A., “Crust reflection of plane SH-waves”, J. Geophys. Res., 65, 4147-4150, 1960.
Hong, T. L., and Helmberger D. V., “Glorified optics and propagation in nonplanar structure”, Bull. Seism. Soc. Am., 68, 1313-1330, 1978.
Horike, M., “Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized area”, J. Phys. Earth, 33, 59-96, 1985.
Hsieh, S. H., “Geology and gravity anomalies of the Pingtung plain, Taiwan”, Proc. Geol. Soc. China., 13, 76-89, 1970.
Hsieh, S. H., “Subsurface geology and gravity anomalies of the Tainan and Chungchou structures of the coastal plain of southwestern Taiwan”, Petrol. Geol. Taiwan, 10, 323-338, 1972.
Hsu, T. L., “The artesian water system beneath the Pingtung valley, southern Taiwan”, Proc. Geol. Soc. China, 4, 73-81, 1961.
Hsu, T. L., and Chang H. C., “Quaternary faulting in Taiwan”, Mem. Geol. Soc. China., 3, 155-165, 1979.
Huang, H. C., “Characteristics of earthquake ground motion and H/V of microtremor in the southwestern part of Taiwan”, Earthquake Eng. Struct. Dyn., 31, 1815-1829, 2002.
Huang, H. C., and Tseng Y. S., “Characteristics of soil liquefaction using H/V of microtremors in Yuan-Lin area”, Terr. Atmos. Ocean Sci., 13, 325-338, 2002.
Huang, H. C., and Wu C. F., “Estimations of the S-wave velocity structures in Chia-Yi City, Taiwan, using the array records of microtremors”, Earth, Planets and Space, 58, 1455-1462, 2006.
Kanai, K., “On the spectrum of strong earthquake motions”, Bull. Earthq. Res. Inst., 40, 71- 90, 1962.
Kanai, K., and Tanaka T., “On the predominant period of earthquake motions”, Bull. Earthq. Res. Inst., 40, 855- 860, 1962.
Katz, L. J., “Microtremors analysis of local geological conditions”, Bull. Seism. Soc. Am., 66, 45- 60, 1976.
Kawase, H., Sato T., Iwata T., and Irikura K., “S-wave velocity structures in the San Fernando and Santa Monica areas”, Proc. of the 2nd International Symposium on Effects of Surface Geology on Seismic Motions, 2, 733-740, Tokyo, Japan,1998.
King, J. L. and Tucker B. E., “Observed variations of earthquake motion across a sediment-filled valley”, Bull. Seism. Soc. Am., 74, 137-151, 1984.
Kuo, C. H., Cheng D. S., Hsieh H. H., Chang T. M., Chiang H. J., Lin C. M., and Wen K. L., “Comparison of three different methods in investigating shallow shear wave velocity structures in Ilan, Taiwan”, Soil Dyn. Earthq. Eng., 29, 133-143, 2009.
Lacoss, R. T., Kelly E. J., and Toksoz M. N., “Estimation of seismic noise structure using array”, Geophysics, 34, 21-38, 1969.
Lee, C. T., Cheng C. T., Liao C. W. and Tsai Y. B. “Site classification of Taiwan free-field strong-motion stations”, Bull. Seism. Soc. Am., 91, 1283-1297, 2001.
Lermo, J., and Ch?vez-Garc?a, F. J., “Site effect evaluation using spectral ratios with only one station”, Bull. Seism. Soc. Am., 83, 1574-1594, 1993.
Lermo, J., and Ch?vez-Garc?a, F. J., “Are microtremors useful in site response evaluation ?”, Bull. Seism. Soc. Am., 84, 1350-1364, 1994.
Meng, C. Y., “The structural development of the southern half of western Taiwan”, Proc. Geol. Soc. China, 10, 77-82, 1967.
Nakamura, Y., “A method for dynamic characteristies estimation of subsurface using microtremor on the ground surface”, QR of RTRI, 30, 1, 25-33, 1989.
Nakamura, Y., "Real time information systems for seismic hazard mitigation UrEDAS”, HERAS and PIC. QR of RTRI, 37, 112-127, 1996.
Nakano, M., Fukuwa, N., and Tobita, J., “Regional variation of ground motion in Nobi Plain, Japan, based on seismic records, microtremor and geological data”, An International Conference on Geotechnical & Geological Engineering, GeoEng 2000, 2000.
Nigbor, R. L. and Imai T., “The suspension P-S velocity logging method”, Proceedings XIII ICSMFE, New Delhi, India, 1994.
Ogura, K., “Expansion of applicability for suspension P-S logging”, OYO Technical Report, No. 10., 1988.
Pan, Y. S., “Interpretation and seismic coordination of the bouguer gravity anomalies obtained in southwestern Taiwan”, Petrol. Geol. Taiwan, 6, 197-207, 1968.
Riepl, J., Bard, P. Y., Hatzfeld, D., Papaioannou, C., and Nechtschein, S., “Detailed evaluation of site response estimation methods across and along the Sedimentary Valley of Volvi (EURO-SEISTEST)”, Bull. Seism. Soc. Am., 88, 488-502, 1998.
Sambridge, M., and Gallagher K., “Earthquake hypocenter location using genetic algorithms”, Bull. Seism. Soc. Am., 83, 1467-1491, 1993.
Sato, T., Kawase H., Matsui M., and Kataoka S., “Array measurement of high frequency microtremors for underground structure estimation”, Proc. of the 4th International Conference on Seismic Zonation, 2, 409-416, Odawana, Japan, 1991.
Satoh, T., Kawase H., and Matsushima S., “Estimation of S-wave velocity structures in and around the Sendai basin, Japan using array records of microtremors”, Bull. Seism. Soc. Am., 91, 206-218, 2001a.
Satoh, T., Kawase H., Iwata T., Higashi S., Sato T., Irikura K., and Huang H. C., “S-wave velocity structure of the Taichung basin, Taiwan, estimated from array and single-station records of microtremoes”, Bull. Seism. Soc. Am., 91, 1267-1282, 2001b.
Singh, S. K., Mena E., and Castro R., “Some aspects of source characteristics of the 19 September 1985 Michoacan earthquake and ground motion amplification in and near Mexico City from strong motion data of the September, 1985, Michoacan, Mexico earthquake”, Bull. Seism. Soc. Am., 78, 451-477, 1988.
Tsan, S. F., and Keng W. P., “The Neogene rocks and major structural features of southwestern Taiwan”, Proc. Geol. Soc. China, 11, 45-59, 1968.
Tucker, B. E. and King J. L., “Dependence of sediment-filled valley resonance on the input amplitude and the valley properties”, Bull. Seism. Soc. Am., 74, 153-165, 1984.
Vidale, J. E., and Helmberger D. V., “Elastic finite-difference modeling of the 1971 San Fernando, California, earthquake”, Bull. Seism. Soc. Am., 78, 122-141, 1988.
Wen, K. L, Beresnev, I. A., and Yeh, Y. T., “Nonlinear soil amplification inferred from downhole strong seismic motion data”, Geophys. Res. Lett., 21, 2625-2628, 1994.
Wen, K. L., Beresnev, I. A. and Yeh, Y. T., “Investigation of non-linear site amplication at two downhole strong ground motion arrays in Taiwan”, Earth. Eng. Structure. Dyn., 24, 313-324, 1995.
Wen, K. L., Lin C. M., Chiang H. J., Kuo C. H., Huang Y. C., and Pu H. C., “Effect of surface geology on ground motions: the case of station TAP056 - Chutzuhu site”, Terr. Atmos. Ocean Sci., 19, 451-462, 2008.
Wen, K. L., and Peng H. Y., “Site effect analysis in the Taipei basin: Results from TSMIP network data”, Terr. Atmos. Ocean Sci., 9, 691-704, 1998.
Wen, K. L., Yeh Y. T., and Huang W. G., “Effects of an alluvial basin on strong ground motions”, Bull. Sei. Soc. Am., 82, 2, 1124-1133, 1992.
Wen et al., “Identification of Nonlinear Site Response Using the H/V Spectral Ratio Method”, Terr. Atmos. Ocean. Sci., Vol. 17, No. 3, 533-546, 2006
Yamanaka, H., and Ishida H., “Application of genetic algorithms to an inversion of surface-wave dispersion data”, Bull. Seism. Soc. Am., 86, 436-444, 1996.
Yu, S. B., and Tsai Y. B., “Geomagnetic investigations in the Pingtung plain”, Bull. Inst. Earth Sciences, Academia Sinica, 1, 189-208, 1981.
Yu, S. B., Yeh Y. T., and Tsai Y. B., “Microearthquake activity in southwestern Taiwan”, Bull. Inst. Earth Sciences, Academia Sinica, 3, 71-85, 1983.
王貞琇,『台北信義區場址效應之研究』,國立中央大學地球物理研究所,碩士論文,2004。
中興工程顧問股份有限公司,『高雄都會區工程地質調查研究(八十八年度)研究成果報告書』,經濟部中央地質調查所報告,1999。
林士棋,『利用微地動量測探討台北盆地之場址效應』,國立中央大學地球物理研究所,碩士論文,2006。
林哲民,『台灣西部平原之淺部速度構造、場址特性及三維震波模擬』,國立中央大學地球物理所,博士論文,2009。
辛在勤,『台灣地區強地動觀測計畫』,台灣地區強地動觀測計畫研討會論文摘要,1-10頁,1993。
李鳳梅,『利用微地動陣列資料探討台北盆地之淺層S波速度構造』,國立中正大學地震研究所暨應用地球物理研究所,碩士論文,2007。
吳永曾、劉進義、張吉佐、許建裕,『921集集大地震對彰濱工業區的影響』,現代營建,第255期,2001。
吳樂群,『台灣西南部旗山地區上部第三細及第四系之沉積層序與演化』,國立台灣大學理學院地質研究所,博士論文, 1993。
吳樂群,『屏東平原沈積物及沈積環境分析』,屏東平原地下水及水文地質研討會論文集,59- 83,1998。
沈振勝,『以地震儀陣列及基因演算法推估近地表剪力波波速』,國立中央大學地球物理所,碩士論文,2002。
耿文溥,『台南以東丘陵區之地質』,經濟部中央地質調查所彙刊第一號,31頁,1981。
涂嘉勝,『利用微地動量測探討台灣中部地區之場址效應』,國立中央大學地球物理研究所,碩士論文,2005。
徐慶雲,『台南縣坑內、龍船及高雄縣小滾水構造地質核查報告』,中油內部報告,1975。
黃文紀,『羅東強震儀陣列區微地動之來源與特性』,國立中央大學地球物理所,碩士論文,1986。
黃有志,『蘭陽平原場址效應及淺層S波速度構造』,國立中央大學地球物理所,碩士論文,2003。
彭瀚毅,『台北盆地場址效應之研究』,國立中央大學地球物理研究所,博士論文,1998。
經濟部中央地質調查所,八十八年度中央地質調查所年報,2000。
溫國樑,『八十四年度臺北盆地地下地質與工程環境綜合調查研究:盆地對地震波效應之研究(I)』,經濟部中央地質調查所報告,第84-012號,1995。
溫國樑,『九十二年度高雄都會區地動特性分析及地層震測研究之研究』,經濟部中央地質調查所報告,第92-15號,2003。
溫國樑、葉永田,『八十五年度臺北盆地地下地質與工程環境綜合調查研究:盆地對地震波效應之研究(I)』,經濟部中央地質調查所報告,第85-006號,1996。
溫國樑、葉永田、葉義雄,『八十一年度臺北盆地地下地質與工程環境綜合調查研究:盆地對地震波效應之研究(I)』,經濟部中央地質調查所報告,第83-004號,1994a。
溫國樑、葉永田、葉義雄,『八十二年度臺北盆地地下地質與工程環境綜合調查研究:盆地對地震波效應之研究(II)』, 經濟部中央地質調查所報告,第83-018號,1994b。
廖勝豐,『利用單站頻譜比法探討台中地區之場址效應』,國立中正大學地球物理研究所,碩士論文,2001。
葉永田、陳國誠、溫國樑、蔡主權,『臺灣地區民國七十五年五月二十日及十一月十五日二次地震的比較』,科技整合研討會,民國七十五年臺灣地區四大災害之發生與防災問題論文集,117-130,1986。
葉明官、吳榮章、張渝龍,『高雄都會區地下地質沈積特性』,臺灣西南地區地質災害研討會論文集,2-1-2-27,2002。
郭俊翔,『探討不同地質區強震站之淺層S波速度構造』,國立中央大學地球物理所,碩士論文,2004。
郭俊翔,『微地動特性的研究及應用』,國立中央大學地球物理所,博士論文,2009。
董倫道、楊潔豪、江崇榮,『屏東平原地球物理探測及地層對比』,屏東平原地下水及水文地質研討會論文集,109-123,1998。
陳佳彰,『利用微地動探討桃竹苗地區之場址效應』,國立中央大學地球物理研究所,碩士論文,2005。
陳信文,『以恆春地震探討高屏地區之場址效應』,國立中央大學地球物理研究所,碩士論文,2007。
陳桂寶,『以地震資料研究高屏地下之淺部地層構造』,國立中央大學地球物理研究所,博士論文,1998。
陳榮煌,『利用微地動陣列資料探討台南地區之淺層S波速度構造』,國立中正大學地震研究所暨應用地球物理研究所,碩士論文,2007。
謝宏灝,『利用井下地震儀陣列探討單站頻譜比法之應用』,國立中央大學地球物理研究所,碩士論文,2001。
蔡益超等,『民國75年11月15日地震臺灣北部地區建築結構震災調查報告』,結構工程,第二卷第一期,3-27,1987。
顏宏元,『臺灣地區重力異常分布及其在地體構造上之含意』,國立中央大學地球物理研究所,博士論文,1991。
指導教授 溫國樑(Kuo-Liang Wen) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明