博碩士論文 986204013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:145 、訪客IP:18.223.171.12
姓名 簡瑋延(Wei-Yen Chien)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 應用物件導向分類方法自動產製斜坡單元
(Automated Generation of Slope-Unit using an Object-Oriented Classification Method)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 運用類神經網路進行地震誘發山崩之潛感分析
★ 地形地質均質區劃分與山崩因子探討★ 由世界應力量測資料探討不同地體構造區的應力特性
★ 921集集地震造成之地表變形模式★ 運用模糊類神經網路進行山崩潛感分析—以台灣中部國姓地區為例
★ 運用判別分析進行山崩潛感分析之研究 – 以臺灣中部國姓地區為例★ 運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例
★ 台灣西南平原末次冰期以來之地層及構造運動★ 利用近年大規模地震的強震資料修正Newmark經驗式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於氣候變遷及極端降雨之影響,近年台灣坡地災害頻繁。為了山崩災害之相關研究及地質災害敏感區劃設之需求,須使用合適之斜坡單元,建立各類型山崩潛勢評估系統。本研究先擇定大漢溪流域內之一小集水區做為訓練區域,以物件導向式分析方法自動化產製斜坡單元。利用數值地形模型計算研究區域內之坡度、坡向、曲率、水系、集水區等網格資料圖層,匯入物件導向分析軟體 Definiens中,給定各資料圖層權重後,根據影像資料之光譜均調性及空間相關性進行影像分割,產製合適之斜坡單元。隨後以此影像分類準則應用於大漢溪流域其他小集水區進行檢核,檢討其成效後,建立合適之影像分類通則,並進行各斜坡單元內坡向標準差之統計,以做為評定成果優劣之用。與使用其他因子之分割程序相比較後,最後使用坡向圖層輔以集水區及水系圖層進行影像分割,使其滿足各斜坡單元之內部差異須最小且單元間差異須最大之基本定義。分析結果顯示,一級河之集水區大多可區分為二至三個或更多個斜坡單元,與前人研究結果相比,能獲得更細緻而合理之劃分結果。
摘要(英) Slope disasters have received attention in recent year worldwide and in Taiwan, because of extremely heavy rainfall presumed to relate to climate change. For the purpose of landslide research and geological sensitive zone designation, we require division of appropriate slope units for building up various types of landslide potential evaluation system. In this study, one of a small catchment in the Tahan river watershed was chosen as the training area, using an object-oriented classification method to automatically generate slope-units. I used DTM (Digital Terrain Model) as raw data to produce raster data layers which include slope gradient, slope aspect, curvature, drainage system, catchment area. These raster data were imported into an object-oriented analysis software, which was known as Definiens, weight of each data layer was given, and then segmentation as well as slope-unit generation was executed, according to the heterogeneity and spatial correlation of the imported data. After that we applied this rule in other catchments of the Tahan river watershed and viewed its effectiveness to make further amendments for a reasonable general rule. A standard deviation of slope aspects in each slope-unit was calculated for checking purpose. Finally, we used the slope aspect and the catchment area, as well as drainage system for segmentation through comparison of the results from different layer weightings. The final result of using this segmentation criteria satisfied the definition of slope-unit that high homogeneity within each unit and high heterogeneity between the neighbor units. It shows that each of a small catchment of a first-order stream could be divided into two or three or even more parts of slope units. This provides more detailed and reasonable result than previous studies.
關鍵字(中) ★ 物件導向
★ 影像分割
★ 斜坡單元
關鍵字(英) ★ Object-Oriented
★ Segmentation
★ Slope unit
論文目次 中文摘要I
英文摘要II
誌 謝III
目 錄V
圖 目VIII
表 目XI
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 2
1.2.1地形分類之相關研究 2
1.2.2斜坡單元之相關研究 5
1.2.3斜坡單元之分割方法 6
1.3研究架構與流程 10
第二章 研究方法 12
2.1軟硬體設備 12
2.2物件導向分析方法 12
2.2.1影像分割(segmentation) 12
2.2.2光譜異質性指標(hcolor) 13
2.2.3空間異質性指標(hshape) 14
2.2.4整體異質性指標(h) 14
2.2.5分割尺度門檻值(scale parameter) 14
2.3模糊邏輯及模糊隸屬函數 15
第三章 資料蒐集與處理 16
3.1研究區概述 16
. 3.2資料蒐集 16
3.2.1數值地形 16
3.3資料處理 17
3.3.1坡度與坡向 17
3.3.2坡向平均值及標準差之計算 19
3.3.3曲率 20
3.3.4水系 21
3.3.5集水區 22
第四章 結果 23
4.1研究區域圖框範圍之選取 24
4.2集水區之產製 25
4.2.1人工繪製之一級河集水區 25
4.2.2 DRAIN程式產生之一級河集水區 26
4.2.3 ArcHydro模組產生之一級河集水區 26
4.2.4人工繪製之一級河集水區與DRAIN程式之比較 29
4.2.5 ArcHydro一級河集水區與DRAIN程式之比較 29
4.3集水區水系門檻值 31
4.4多尺度影像分割 31
4.4.1人工繪製之斜坡單元 31
4.4.2影像分割尺度及權重之選擇 31
4.5影像分類 37
4.6統計檢定 38
4.6.1斜坡單元內之坡向分布 38
4.6.2斜坡單元內之坡向標準差計算 38
第五章 討論 40
5.1斜坡單元之內部標準差 40
5.1.1人工繪製之斜坡單元內部標準差 40
5.1.2自動產製之斜坡單元內部標準差 40
5.2套用至觀察區域進行影像切割 43
5.2.1大曼溪集水區 44
5.2.2寶里苦溪集水區 44
5.2.3雪霧鬧溪集水區 45
5.2.4庫志集水區 45
5.2.5卡拉溪集水區 45
5.2.6訓練區域及觀察區域之坡向標準差分布 52
5.3觀察區域之坡向標準差高值區 54
5.4面積統計檢定 54
5.5建立斜坡單元之影像分割準則 58
5.5.1以集水區限制區塊成長邊界之成效 58
5.5.2使用其他圖層權重進行影像分割之成效 60
5.6本研究建議之斜坡單元影像分割流程 63
5.6.1套疊現有山崩目錄檢核斜坡單元 63
5.6.2套疊順向坡目錄檢核斜坡單元 64
5.6.3應用於其他區域之斜坡單元影像分割流程 64
第六章 結論與建議 66
6.1結論 66
6.2建議 66
參考文獻 68
圖目錄
圖1.1 格網及斜坡單元示意圖............................4
圖1.2 斜坡縱斷面之坡變點示意圖............................5
圖1.3 以一級河集水區為例之斜坡單元示意圖............................6
圖1.4 集水區重疊法示意圖............................9
圖1.5 以手動延伸所做的斜坡單元劃分範例............................9
圖1.6 研究流程圖............................11
圖2.1 影像分割異質性指標計算流程圖............................13
圖2.2 隸屬函數與模糊區間示意圖............................15
圖3.1 數值地形網格與等間距高程示意圖.......................................... 17
圖3.2 數值地形之網格計算示意圖.......................................................18
圖3.3 坡向轉換為x 及y 軸方向單位向量示意圖..............................19
圖3.4 以高程剖面表示之窪地及填補窪地示意圖...............................21
圖3.5 水系網格示意圖及水系網格進行河川分段之示意圖................22
圖4.1 研究區域─桃園縣復興鄉大漢溪流域.......................................23
圖4.2 訓練區域─桃園縣復興鄉大漢溪流域宇內溪集水區.............. 24
圖4.3 數值地形圖框與研究區域圖框之示意圖.................................. 24
圖4.4 Strahler定義之河流級序示意圖..................................................25
圖4.5 Drain程式產製之水系...................................................26
圖4.6 ArcGIS之ArcHydro模組產製之水系.........................................27
圖4.7 Drain程式及ArcHydro模組產製之水系疊合比較圖................ 27
圖4.8 人工繪製之一級河集水區...........................................................28圖4.9 使用Drain程式人工給定出口點後產生之一級河集水區.........28
圖4.10 使用ArcHydro模組產生之水系及一級河集水區...................29
圖4.11 Drain程式及人工繪製之一級河集水區疊合圖........................30
圖4.12 Drain程式及ArcHydro產製之一級河集水區疊合圖...............30
圖4.13 宇內溪集水區之數值高程模型.................................................32
圖4.14 宇內溪集水區之坡度網格資料圖層.........................................33
圖4.15 宇內溪集水區之坡向網格資料圖層.........................................33
圖4.16 宇內溪集水區X方向單位向量之坡向網格資料圖層.............34
圖4.17 宇內溪集水區Y方向單位向量之坡向網格資料圖層.............34
圖4.18 宇內溪集水區之剖面曲率網格資料圖層.................................35
圖4.19 宇內溪集水區之平面曲率網格資料圖層.................................35
圖4.20 匯入物件導向軟體進行分割之水系及集水區.........................36
圖4.21 宇內溪集水區人工繪製之斜坡單元.........................................36
圖4.22 宇內溪集水區以物件導向軟體產製之斜坡單元.....................37
圖4.23 水系產生之細小之斜坡單元以影像分類方法選取後去除.....37
圖4.24 宇內溪集水區坡向分布長條圖.................................................38
圖4.25 初次產製之斜坡單元內部其坡向標準差之分布圖.................39
圖4.26 斜坡單元內部坡向標準差之長條圖.........................................39
圖5.1 人工繪製之斜坡單元疊合坡向...................................................41
圖5.2 人工繪製之斜坡單元內部標準差分布圖...................................41
圖5.3 自動產製之斜坡單元疊合坡向分布圖.......................................42
圖5.4 自動產製之斜坡單元內部標準差分布圖...................................42
圖5.5 訓練區域及五個觀察區域於研究區域中之位置........................44
圖5.6 大曼溪集水區斜坡單元疊合坡向之分布圖...............................46
圖5.7 大曼溪集水區斜坡單元內部標準差分布圖...............................46
圖5.8 寶里苦溪集水區斜坡單元疊合坡向之分布圖...........................47
圖5.9 寶里苦溪集水區斜坡單元內部標準差分布圖............................47
圖5.10 雪霧鬧溪集水區斜坡單元疊合坡向之分布圖.........................48
圖5.11 雪霧鬧溪集水區斜坡單元內部標準差分布圖.........................49
圖5.12 庫志集水區斜坡單元疊合坡向之分布圖.................................50
圖5.13 庫志集水區斜坡單元內部標準差分布圖.................................50
圖5.14 卡拉溪集水區斜坡單元疊合坡向之分布圖.............................51
圖5.15 卡拉溪集水區斜坡單元內部標準差分布圖.............................51
圖5.16 高標準差斜坡單元疊合等高線圖.............................................54
圖5.17 大曼溪集水區之斜坡單元面積分布長條圖.............................55
圖5.18 寶里苦溪集水區之斜坡單元面積分布長條圖.........................56
圖5.19 雪霧鬧溪集水區之斜坡單元面積分布長條圖.........................56
圖5.20 庫志集水區之斜坡單元面積分布長條圖.................................57
圖5.21 卡拉溪集水區之斜坡單元面積分布長條圖.............................57
圖5.22 未使用集水區限制邊界之斜坡單元坡向標準差分布圖.........59
圖5.23 未使用集水區限制邊界之斜坡單元套疊彩繪明暗圖.............59
圖5.24 使用平面、剖面曲率產製斜坡單元之坡向標準差分布圖.......61
圖5.25 使用平面、剖面曲率產製斜坡單元疊合彩繪明暗圖...............61
圖5.26 使用總曲率及水系產製斜坡單元之坡向標準差分布圖.........62
圖5.27 使用總曲率及水系產製斜坡單元疊合彩繪明暗圖.................62
圖5.28 斜坡單元與現有山崩目錄套疊圖.............................................63
圖5.29 斜坡單元影像分割流程圖.........................................................65
表目錄
表1.1 斜坡單元分割方法比較表........................................8
表4.1 初步影像分割之權重設定及其產生之單元邊界.......................32
表5.1 調整後之分割準則..................................................43
表5.2 訓練區域人工繪製及自動產製斜坡單元坡向標準差比較表...52
表5.3 觀察區域之斜坡單元內部坡向標準差比較表...........................53
表5.4 觀察區域各集水區斜坡單元面積分布比較表...........................55
表5.5 集水區使用與否之斜坡單元分割程序比較表...........................58
表5.6 不同因子進行斜坡單元分割程序之比較表...............................60
表5.7各觀察區域內斜坡單元個數與山崩跨越斜坡單元之個數表...63
參考文獻 王鑫(1988) 地形學,聯經出版事業公司,共356頁。
宋芝萱 (2007) 順向坡的地形分析及自動萃取,國立中央大學地球科學系學士論文,共21頁。
宋秉憲 (2005) 以數值高程模型辨識地形之研究,國立政治大學資訊科學學系碩士論文,共59頁。
林文賜、朱豐沂 (2009) 集水區自動劃分理論之評估與應用,水保技術,第四卷,第二期,第74-80頁。
林淑媛 (2003) 地形地質均質區劃分與山崩因子探討,國立中央大學應用地質研究所碩士論文,共140頁。
紀宗吉、林錫宏、蘇品如、張閔翔、周稟珊 (2007) 山崩敏感區評估之製圖地形單元製作研究。經濟部報告書編號:95008,共39頁。
莊雲翰 (2002) 結合影像區塊及知識庫分類之研究--以IKONOS 衛星影像為例,國立中央大學土木工程研究所碩士論文,共94頁。
黃韋凱 (2010) 物件導向分析方法應用於遙測影像之分區及崩塌地與人工設施分類,國立台灣大學應用土木工程學研究所碩士論文,共109頁。
楊奕岑、徐美玲、賴進貴 (2005) DEM 解析度暨流向演算法對於集流面積計算之影響,地理學報,第39期,第 71-90頁。
劉守恆 (2003) 衛星影像於崩塌地自動分類組合之研究,國立成功大學地球科學系碩士論文,共83頁。
鄭雅文、史天元、蕭國鑫(2003) 物件導向分類於高解析度影像自動判釋,航測及遙測學刊,第十三卷,第四期,第273-284 頁。
經濟部中央地質調查所 (2007) 地質敏感區災害潛勢評估與監測─都會區周緣坡地山崩潛勢評估(1/4),經濟部中央地質調查所,共56頁。
Alcantara-Ayala, I. (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47, 2-4, 107-124.
Aleotti, P., Chowdhury, R. (1999) Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58, 1, 21-44.
Alexander, D. (1991) Applied geomorphology and the impact of natural hazards on the built environment. Natural Hazards, 4, 1, 57-80.
Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., Reichenbach, P. (2002) Impact of mapping errors on the reliability of landslide hazard maps. Natural Hazards and Earth System Science , 2, 3-14.
Barlow, J., Franklin, S., Martin, Y. (2006) High spatial resolution satellite imagery, DEM derivatives, and image segmentation for the detection of mass wasting processes. Photogrammetric Engineering and Remote Sensing, 72, 6, 687-692.
Barlow, J., Martin, Y., Franklin, S. (2003) Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains, British Columbia. Canadian Journal of Remote Sensing, 29, 510-517.
Bue, B., Stepinski, T. (2006) Automated classification of landforms on Mars. Computers Geosciences, 32, 5, 604-614.
Burnett, C., Blaschke, T. (2003) A multi-scale segmentation/object relationship modelling methodology for landscape analysis. Ecological Modelling, 168, 3, 233-249.
Burrough, P. A., van Gaans, P. F. M., MacMillan, R. (2000) High-resolution landform classification using fuzzy k-means. Fuzzy Sets and Systems, 113, 1, 37-52.
Carrara, A. (1983) Multivariate models for landslide hazard evaluation. Mathematical Geology, 15, 3, 403-426.
Carrara, A. (1988) Drainage and divide networks derived from high-fidelity digital terrain models. NATO ASI series. Series C, Mathematical and Physical Sciences, 223, 581-597.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P. (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, 16, 5, 427-445.
Carrara, A., Cardinali, M., Guzzetti, F., Reichenbach, P. (1995) GIS technology in mapping landslide hazard. Geographical Information Systems In Assessing Natural Hazards. Kluwer Academic Publisher, Dordrecht, 135-176.
Carrara, A., Crosta, G., Frattini, P. (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surface Processes and Landforms, 28, 10, 1125-1142.
Claessens, L., Heuvelink, G., Schoorl, J., Veldkamp, A. (2005) DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surface Processes and Landforms, 30, 4, 461-477.
Cooke, R. U., Doornkamp, J. C. (1994) Geomorphology in environmental management, Clarendon press, Oxford, 410p
Definiens Imaging (2004) eCognition user guide 4, Germany, 486p.
Dikau, R. (1989) The application of a digital relief model to landform analysis in geomorphology, Philadelphia, Taylor & Francis, 219p
Drăguţ, L., Blaschke, T. (2006) Automated classification of landform elements using object-based image analysis. Geomorphology, 81, 3-4, 330-344.
Dymond, J., Derose, R., Harmsworth, G. (1995) Automated mapping of land components from digital elevation data. Earth Surface Processes and Landforms, 20, 2, 131-137.
Dymond, J. R., Harmsworth, G. R. (1994) Towards automated land resource mapping using digital terrain models. ITC Journal, 2, 129-138.
Fels, J., Matson, K. (1996) A cognitively-based approach for hydrogeomorphic land classification using digital terrain models, National Centre for Geographic Information and Analysis, Santa Barbara, CA, USA. CD-ROM
Flanders, D., Hall-Beyer, M., Pereverzoff, J. (2003) Preliminary evaluation of eCognition object-based software for cut block delineation and feature extraction. Canadian Journal of Remote Sensing, 29, 4, 441-452.
Giles, P. T., Franklin, S. E. (1998) An automated approach to the classification of the slope units using digital data. Geomorphology, 21,3-4, 251-264.
Guzzetti, F., Reichenbach, P. (1994) Towards a definition of topographic divisions for Italy. Geomorphology, 11, 1, 57-74.
Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31, 1-4, 181-216.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., Galli, M. (2006) Estimating the quality of landslide susceptibility models. Geomorphology, 81, 1-2, 166-184.
Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., Cardinali, M. (2006) Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Sciences, 6, 115-131.
Hansen, A. (1984) Landslide hazard analysis. In: Brunsden, D. and Prior, D.B. (eds.), Slope instability, Wiley & Sons, New York, 523-602.
Hansen, A., Franks, C.A.M., Kirk, P.A., Brimicombe, A.J., Tung, F. (1995) Application of GIS to hazard assessment, with particular reference to landslides in Hong Kong. Geographical Information Systems in Assessing Natural Hazards, Kluwer Academic Publisher, Dordrecht, The Netherlands, 135-175.
Imagine, E. (2005) ERDAS field guide. Atlanta, Georgia, USA: ERDAS Inc, 770p
Irvin, B. J., Ventura, S. J., Slater, B. K. (1997) Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma, 77, 2-4, 137-154.
Klingseisen, B., Metternicht, G., Paulus, G. (2008) Geomorphometric landscape analysis using a semi-automated GIS-approach. Environmental Modelling Software, 23, 1, 109-121.
MacMillan, R., Pettapiece, W., Nolan, S., Goddard, T. (2000) A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems, 113, 1, 81-109.
Martha, T. R., Kerle, N., Jetten, V., van Westen, C. J., Kumar, K. V. (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology, 116, 1-2, 24-36.
Meijerink, A. (1988) Data acquisition and data capture through terrain mapping units. ITC-Journal (Netherlands ), 1988:1, 23-44.
Pennock, D. J., Zebarth, B., De Jong, E. (1987) Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma, 40, 3-4, 297-315.
Prima, O. D. A., Echigo, A., Yokoyama, R., Yoshida, T. (2006) Supervised landform classification of Northeast Honshu from DEM-derived thematic maps. Geomorphology, 78, 3-4, 373-386.
Schmidt, J., Hewitt, A. (2004) Fuzzy land element classification from DTMs based on geometry and terrain position. Geoderma, 121, 3-4, 243-256.
Schneevoigt, N. J., van der Linden, S., Thamm, H. P., Schrott, L. (2008) Detecting Alpine landforms from remotely sensed imagery. A pilot study in the Bavarian Alps. Geomorphology, 93, 1-2, 104-119.
Soille, P. (2004) Morphological image analysis, principles and applications, 2nd ed.. Springer, 391p.
Speight, J. G. (1977) Landform pattern description from aerial photographs. Photogrammetria, 32, 5, 161-182.
Strahler, A.N. (1952) Dynamic basis of geomorphology. Bull. Geol. Soc. American, 63, 9, 923-938.
Van Asselen, S., Seijmonsbergen, A. (2006) Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology, 78, 3-4, 309-320.
Van Den Eeckhaut, M., Reichenbach, P., Guzzetti, F., Rossi, M., Poesen, J. (2009) Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium. Natural Hazards and Earth System Sciences, 9, 507-521.
Van Westen, C. J., Soeters, R., Sijmons, K. (2000) Digital geomorphological landslide hazard mapping of the Alpago area, Italy. International Journal of Applied Earth Observation and Geoinformation, 2, 1, 51-60.
Verstappen, H.T. (1983) Applied geomorphology: Geomorphological survey for environmental development. Elsevier Scientific Publishing Co., Amsterdam.
Wilson, J. P., Gallant, J. C. (2000) Terrain analysis: principles and applications, John Wiley & Sons, Inc. New York, 479p
Xie, M., Esaki, T., Zhou, G. (2004) GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Natural Hazards, 33, 2, 265-282.
Xie, M., Esaki, T., Zhou, G., Mitani, Y. (2003) Geographic information systems-based three-dimensional critical slope stability analysis and landslide hazard assessment. Journal of Geotechnical and Geoenvironmental Engineering, 129, 1109-1118.
Zadeh, L. (1965) Application of fuzzy set theory. Fuzzy Sets, Information and Control, 8, 338-353.
指導教授 李錫堤(Chyi-tyi Lee) 審核日期 2011-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明