博碩士論文 982204023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:122 、訪客IP:3.145.105.105
姓名 張瑋玲(Wei-Ling Chang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 阿拉伯芥hit3和et突變種之生理定性及其基因定位
(Identification, Characterization and Gene Mapping of Arabidopsis thaliana hit3 and et Mutants)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析
★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制★ 阿拉伯芥突變種hit2之位址定位
★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位
★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究
★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現
★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究★ 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究
★ 蛋白質法尼脂化修飾參與植株耐熱反應★ 探討ETO1-LIKE1(EOL1)及EOL2參與阿拉伯芥幼苗光形態發育之功能
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 植物無法隨意地移動,因此植物時時刻刻接受環境中各式各樣的環境逆境。高溫逆境為主要的環境逆境之一,高溫逆境對植物所造成傷害,包括蛋白質變性、膜結構之破壞及光合作用酵素活性之抑制。為了了解植物如何抵禦高溫逆境,以期能運用基因工程去增進作物對熱的耐受性,我們利用正向式遺傳研究法(forward genetics approach) 找尋並研究植物的耐熱基因。以化學突變劑甲基磺酸乙酯 (ethylmethane sulfonate) 為突變劑,本實驗室篩選出兩株對長時間高溫逆境過度敏感之阿拉伯芥突變種植物,分別命名為hit3 (heat intolerant 3) 和et (eighteen),此研究主要目的即為hit3和et 之生理定性及其基因定位。實驗結果顯示,hit3突變基因位於AGI map第五條染色體20,637 kb-20,684 kb之間;et突變點位於阿拉伯芥登錄序號為At5g10010 之基因內,一個由C 變成A 之鹼基點突變。 ET能轉譯為434個胺基酸但功能未知之蛋白質。以NCBI protein blast、PredictProtein及NetNES 1.1 Server分析發現,ET位於細胞核內,具有細胞核定位訊號序列 (nuclear localization signal sequence, NLS)。 此外,et對短時間熱休克處理、離層酸 (abscisic acid) 和巴拉刈 (paraquat) 也呈現高度敏感性,顯示出ET有可能參與並保護植物對抗多種環境逆境。綜合以上研究結果,ET的生理角色,有可能是藉由調節細胞核內之生理生化反應,以促成植物必備之耐熱反應。而ET基因除參與阿拉伯芥耐熱機制外,亦涉及阿拉伯芥抵抗其他種類逆境之能力。
摘要(英) Plants, being immobile and cannot escape from their habitat, are vulnerable to various environmental stresses. One of the most typical stress plants encounte is high temperature stress. Heat stress can cause serious injuries to plants, including structural damage of membrane and inhibition of enzyme activities that will eventually leading to plant death. In order to identify genetic determinants that are essential for plant heat tolerance, with the ultimate goal of improving crop heat tolerance through genetic engineering, we have used a forward genetic approach to screen for heat-intolerant mutants of Arabidopsis after ethyl-methane sulfonate (EMS) -mutagenesis. Two of the mutants, hit3 and et were isolated because of their inability to tolerate sustained high temperature stress. To identify the mutated loci of hit3 and et, we employed map-based cloning procedures. Results indicated that hit3 is located at a region between AGI map 3,104 kb and 3,143 kb of the chromosome Ⅴ. The et locus is mapped to At5g10010. The mutation of et is a single nucleotide change from C to A. ET encodes a novel protein of 434 amino acids. NCBI protein blast, PredictProtein and NetNES 1.1 Server analysis indicate that ET protein contains a strong nuclear localization signal sequence (NLS) and is predicted to subcellularly localized to nucleus. These result suggest that the physiological role of ET is involved in nuclear function by which plant can survive under heat stress condition. Meanwhile, et was found to exhibit hypersensitivity to heat shock, abscisic acid and paraquat as well, suggesting that ET also participate in protecting plants from other forms of stresses.
關鍵字(中) ★ 熱逆境
★ 基因定位
★ 阿拉伯芥
關鍵字(英) ★ heat stress
★ mapping
★ Arabidopsis
論文目次 中文摘要 I
Abstract II
致謝 III
總目錄 IV
圖目錄 VI
表目錄 VII
緒論 1
材料與方法 6
1. 突變種之顯、隱性鑑定 6
2. 突變種之位址定位 6
3. 突變種之核甘酸定序 10
4. ET 基因之質體構築 11
5. ET基因在植物細胞中的表現位置 (Localization) 14
6. 短時間致死性熱處理與後天耐熱性獲得對et生長表現型之測試 15
7. 巴拉刈 (Paraquat) 對et生長表現型之測試 16
8. 阿拉伯芥et幼苗對抗離層酸逆境之測試 16
9. 鹽分逆境對hit3根部生長之測試 16
結果 17
1. 突變種之表現型 17
2. 突變種之顯、隱性鑑定 17
3. 突變種之位址定位 18
4. 突變種之核甘酸定序 20
5. ET 基因之選殖 20
6. ET於細胞中之表現位置 21
7. 阿拉伯芥ET 基因cDNA 之序列分析 21
8. 短時間致死性熱處理與後天耐熱性獲得對et生長表現型之測試 22
9. 巴拉刈 (Paraquat, MV) 對et生長表現型之測試 22
10. 植物賀爾蒙離層酸 (Abscisic acid) 對et生長表現型之測試 23
11. 鹽分逆境對hit3根部生長之測試 24
討論 25
1. hit3之核甘酸定序 25
2. ET基因功能 25
3. ET基因功能上游序列之特性分析 27
4. et在短時間致死性熱處理與後天耐熱性獲得生理實驗之探討 28
5. et與離層酸 (Abscisic acid )和熱逆境之關係性 29
6. ET具有功能未知之保留性區域 30
文獻參考 31
參考文獻 Abeles, F.B. (1986) Role of ethylene in Lactuca sativa cv. ‘Grand Rapids’ seed
germination. Plant Physiol. 81: 780–787.
Baniwal, S.K., Bharti, K., Chan, K.Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S.K., Nover, L., Port, M., Scharf, K.D., Tripp, J., Weber, C., Zielinski, D. and von Koskull-Doring, P. (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci, 29: 471–487.
Cercos, M., Gomez-Cadenas, A. and Ho T.H. (1999) Hormonal regulation of a cysteine proteinase gene, EPB1, in the aleurone cells of Germinating Barley Seeds: cis- and trans-acting elements involved in the gibberellin induct ion. The Plant Journal 19: 107-118.
Charng, Y.Y., Liu, H.C., Liu, N.Y., Hsu, F.C. and Ko, S.S. (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol, 140:1297-1305.
Chen W. and Singh K.B. (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. The Plant Journal.19(6): 667-677.
Chiang, Y.J., Wu, Y.X., Chiang, M.Y., Wang, C.Y. (2008) Role of antioxidative system in paraquat resistance of tall fleabane (Conyza sumatrensis).Weed Sci. 56: 350-355.
Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., Inzé, D., and Van
Breusegem, F. (2000) Dual action of the active oxygen species during plant stress
responses. CMLS. 57:779-795.
Desikan, R., A.-H.-Mackerness, S., Hancock, J.T. and Neill, S.J. (2001) Regulationof the Arabidopsis transcriptome by oxidative stress. Plant Physiology. 127:159–172.
Dingwall, C., Sharnick, S.V. and Laskey, R.A. (1982) A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell. 30:449-458.
Fornerod, M., van Deursen, J, van Baal, S., Reynolds, A., Davis, D., Murti, K.G., Fransen, J. and Grosveld, G. (1997) The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J. 16, 807–816.
Gallardo, M, Delgado, M., Sanchez-Calle I.M. and Matilla, A.J. (1991) Ethylene production and 1-aminocyclopropane-1-carboxylic acid conjugation in thermoinhibited cicer arietinum L. seeds. Plant Physiol. 97:122–127.
Gong, M., Li, Y.J., Chen, S.Z. (1998) Abscisic acid induced thermotolerance
in maize seedlings is mediated by Ca2+ and associated with antioxidant systems. Journal of Plant Physiology. 153:488–496.
Goodman, H.M., Ecker, J. and Dean, C. (1995) The genome of Arabidopsis thaliana. Proc Natl Acad Sci. 92(24): 10831–10835.
Görlich, D., Kutay, U. (1999) Transport between the cell nucleus and the cytoplasm.
Annu Rev Cell Dev Biol, 5:607-60.
Guo, J., Wu, J., Ji, Q., Wang, C., Luo, L., Yuan, Y., Wang, Y., Wang, J. (2008) Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet and Genomics. 35:105−118.
Haralampidis, K., Milioni, D., Rigas, S., Hatzopoulos, P. (2002) Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene. Plant Physiol. 129: 1138-1149.

Heerklotz, D., Döring, P., Bonzelius, F., Winkelhaus, S. and Nover, L. (2001) The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol. 21:1759-1768.
Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Research. 27(1):297-300.
Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M. and Last, R.L. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol, 129: 440-450.
Jiang, M. and Zhang, J. (2003) Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant Cell Environ. 26: 929–939.
Kalderon, D., Roberts, B.L., Richardson, W.D. and Smith, A.E. (1984) A short amino acid sequence able to specify nuclear location. Cell, 39:499-509.
Kutay, U. and Güttinger, S. (2005) Leucine-rich nuclear export signals: born to be weak. Trends in Cell Biol. 15: 121-124.
Reynolds, T., Thompson, P. (1971) Characteristics of the high temperature
inhibition of germination of lettuce (Lactuca sativa). Physiol Plant. 24:544–547.
Robertson, A.J., Ishikawa, M., Gusta, L.V. and MacKenzie, S.L. (1994) Abscisic Acid-lnduced Heat Tolerance in Bromus inermis Leyss Cell-Suspension Cultures. Plant Physiol. 105: 181-190.
Robertson, A.I., Ishikawa, M., Custa, L.V. and MacKenzie, S.I. (1994) Abscisic acid-induced heat tolerance in Bromus inermis Leyss cell-suspension cultures. Heat-stable, abscisic acid-responsive polypeptides in combination with sucrose confer enhanced thermostability. Plant Physiol, 105: 181-190.
Sangwan, V., Orvar, B.L., Beyerly, J., Hirt, H. and Dhindsa, R.S. (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. The Plant Journal. 31(5): 629-638.
Stalberg K, Ellerstom M, Ezcurra I, Ablov S, Rask L. (1996) Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta. 199:515-519.
Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A. and Giraudat, J. (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal. 25(3): 295-303.
Larkindale, J. and Knight, M.R. (2002) Protection against heat stress-induced oxidative damage inArabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128:682–695.
Meinle, D.W., Meinke, L.K., Showalter, T.C., Schissel, A.M., Mueller L.A. and Tzafrir, I. (2003) A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol. 131: 409-418.
Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. (2004) Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498.
Nag, R., Maity, M.K., Dasgupta, M. (2005) Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin. Plant Mol Biol. 59: 821-838.
Nam, H.G., Giraudat, J., Den Boer, B., Moonan, F., Loos, W., Hauge, B.M., and Goodman, H.M. (1989) Restriction fragment length polymorphism linkage map of Arabidopsis thaliana. Plant Cell. 1: 699-705.
Parinov, S. and Sundaresan, V. (2000) Functional genomics in Arabidopsis:
large scale insertional mutagenesis complements the genome sequencing project. Current Opinion in Biotechnology. 11: 157-161.
Peters, J.L., Cnudde, F. and Gerats, T. (2003) Forward genetics and map-based cloning approaches. TRENDS in Plant Science, 8: 1360-1385
Rieping, M, Schoffl, F.(1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol Gen Genet. 231: 226-232.
Rost, B., Yachdav, G. and Liu, J. (2004) The PredictProtein Server. Nucleic Acids Research. 32:W321-W326.
Sangwan, V., Orvar, B.L., Beyerly, J., Hirt, H., Dhindsa, R.S. (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J. 31: 629–638.
Schroeder, J.I., Kwak, J.M. and Gethyn, J.A. (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. NATURE. 410: 327-330.
Taylor, N.L., Day, D.A. and Millar, A.H. (2004) Target of stress-induced
oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen
metabolism. Eur. J. Biochem. 55:1-10.
The Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408: 796-815.
Toh, S., Imamura, A., Watanabe, A., Nakabayashi, K., Okamoto, M., Jikumaru, Y., Hanada, A., Aso, Y., Ishiyama, K., Tamura, N., Iuchi, S., Kobayashi, M., Yamaguchi, S., Kamiya, Y., Nambara, E. and Kawakami, N. (2008) High Temperature-Induced Abscisic Acid Biosynthesis and Its Role in the Inhibition of Gibberellin Action in Arabidopsis Seeds. Plant Physiology. 146: 1368–1385
Wang L. C. (2006) The effects of HIT1, a vesicle tethering factor homolog, on tip
growth and the raw mapping of hit2 locus in Arabidopsis. Master Thesis, Grauduate
schoolof Life Science, National Central University.
Wang, L.C., Yeh, C.H., Ronald, J. S., Lee, Y.Y., Lu, C.A. and Wu, S.J. (2008)
Arabidopsis HIT1, a putative homolog of yeast tethering protein Vps53p, is required
for pollen tube elongation. Botanical Studies. 49: 25-32.
Wang, L.C., Tsai, M.C., Chang, K.Y., Fan, Y.S., Yeh, C.H. and Wu, S.J. (2011)
Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. Journal of Experimental Botany. doi:10.1093
Xiong, L., Ishitani, M., Lee, H., and Zhu, J.K. (2002) The Arabidopsis LOS5/ABA3 Locus Encodes a Molybdenum Cofactor Sulfurase and Modulates Cold Stress– and Osmotic Stress–Responsive Gene Expression. The Plant Cell. 13: 2063-2083
Zeevaart, J.A.D., Creelman, R.A. (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Bio. 39: 439–473.
指導教授 吳少傑(Shaw-Jye Wu) 審核日期 2011-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明