博碩士論文 972404001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:120 、訪客IP:52.14.221.113
姓名 邱文志(Wen-Chih Chiu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 酵母菌valyl-tRNA synthetase之演化研究
(Insight into the evolution of yeast valyl-tRNA synthetase)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ 探討DNA損傷反應與慢性暴露4-胺基聯苯產生之肝臟毒性★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins
★ Recognition of tRNA His isoacceptors by human HisRS isoforms★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P
★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii★ tRNA aminoacylation by a naturally occurring mini-AlaRS
★ Functional Repurposing of C-Ala Domains★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase
★ 探討Alanyl-tRNA synthetase的演化及專一性★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討
★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能★ 探討酵母菌Valyl-tRNA synthetase的生化活性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 經過數十年探索,對於aminoacyl-tRNA synthetases (aaRSs)的功能以及結構的理解已有長足進展。相較之下,對於他們的演化路徑仍然相當模糊,尤其是具有雙重功能之基因,例如valyl-tRNA synthetase (ValRS)。因此,在此我們著眼於酵母菌ValRS 的演化情形及其附加區段的功能。過去的研究指出酵母基因VAS1可轉譯出細胞質以及粒線體的ValRS。我們發現大腸桿菌 ValRS基因無法取代酵母菌VAS1基因的功能。但是,藉由將其與酵母菌ValRS附加區段或其它非專一性的tRNA 鍵結區段(TRBD)以及粒線體標的訊號(MTS)結合,能將E. coli ValRS轉變成一個雙功能的酵母菌ValRS。而除了裂殖酵母菌Schizosaccharomyces pombe之外,其它的酵母菌都只具有一個ValRS基因。S. pombe有兩個位於染色體的同源基因 SpVAS1和SpVAS2,分別執行細胞質和線粒體功能。令人驚訝的是他們都是源自粒線體的基因,這表示真核生物ValRS的演化並不是單純地由內共生和線粒,體基因轉移到細胞核而形成的。除此之外,我們發現了S. pombe的tRNA結合蛋白Asc1p與核醣體有交互作用。此研究不僅提出一個ValRS如何由原核生物演化成現代酵母菌的概念,也顯示 Asc1p以及ValRS之附加區段可能與aminoacyl-tRNA 之傳輸有關。
摘要(英) After decades of exploration, knowledge of structure and functions of aminoacyl-tRNA synthetases (aaRSs) has progressed by leaps and bounds. However, their evolution paths are still obscure, especially for the dual-functional genes such as valyl-tRNA synthetase (ValRS). We focus herein on the evolution of yeast ValRS and its appended domain. Previous studies showed a single yeast gene, VAS1, encodes both cytosolic and mitochondrial forms of ValRS. We show that ValRS of Escherichia coli per se cannot substitute for yeast ValRS, but can be converted into a dual-functional yeast enzyme by fusion to the appended domain of yeast ValRS or a nonspecific tRNA-binding domain (TRBD) and a mitochondrial targeting signal (MTS). Interestingly, except for the fission yeast Schizosaccharomyces pombe, all yeast species studied contained a single ValRS gene. There are two homologous ValRS genes in the chromosomes of S. pombe, named SpVAS1 and SpVAS2, which specify cytosolic and mitochondrial functions, respectively. Surprisingly, both of them are of mitochondria origin. This finding suggests that evolution of eukaryotic ValRS invloved processes more than endosymbiosis and mitochondria-to-nucleus gene transfer. In addition, we found that the tRNA-binding protein Asc1p of S. pombe associates with ribosomal proteins. These findings not only suggest an evolutionary path for ValRS from prokaryotes to modern yeasts, but also underscore the possibility that both the appended domain of yeast ValRS and Asc1p play a role in aminoacyl-tRNA channeling.
關鍵字(中) ★ 酵母菌
★ tRNA合成酶
★ 演化
關鍵字(英) ★ yeast
★ valyl-tRNA synthetase
★ evolution
論文目次 中文摘要 i
Abstract ii
Declaration iii
誌 謝 iv
Table of Contents v
List of Tables vii
List of Figures viii
Abbreviation x
Overall introduction 1
Chapter I - Evolutionary basis of converting a bacterial tRNA synthetase 11
Abstract 12
Materials and Methods 13
Results 16
Discussion 21
Chapter II - Schizosaccharomyces pombe possesses two paralogous valyl-tRNA synthetase genes of mitochondrial origin 24
Abstract 25
Materials and Methods 26
Results 29
Discussion 35
Chapter III - Functional characterization of ASC1, the Schizosaccharomyces pombe homologue of budding yeast ARC1 38
Abstract 39
Materials and Methods 40
Result 44
Discussion 47
Summary 49
References 51
參考文獻 Agris PF (1996) The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol 53: 79-129
Agris PF, Vendeix FA, Graham WD (2007) tRNA's wobble decoding of the genome: 40 years of modification. J Mol Biol 366: 1-13
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410
Arnez JG, Moras D (1997) Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci 22: 211-216
Ashraf SS, Sochacka E, Cain R, Guenther R, Malkiewicz A, Agris PF (1999) Single atom modification (O-->S) of tRNA confers ribosome binding. RNA 5: 188-194
Bahler J, Wu JQ, Longtine MS, Shah NG, McKenzie A, 3rd, Steever AB, Wach A, Philippsen P, Pringle JR (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14: 943-951
Basi G, Schmid E, Maundrell K (1993) TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123: 131-136
Bec G, Kerjan P, Waller JP (1994) Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex. Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation. J Biol Chem 269: 2086-2092
Bec G, Kerjan P, Zha XD, Waller JP (1989) Valyl-tRNA synthetase from rabbit liver. I. Purification as a heterotypic complex in association with elongation factor 1. J Biol Chem 264: 21131-21137
Bec G, Waller JP (1989) Valyl-tRNA synthetase from rabbit liver. II. The enzyme derived from the high-Mr complex displays hydrophobic as well as polyanion-binding properties. J Biol Chem 264: 21138-21143
Beuning PJ, Musier-Forsyth K (1999) Transfer RNA recognition by aminoacyl-tRNA synthetases. Biopolymers 52: 1-28
Bhat TN, Blow DM, Brick P, Nyborg J (1982) Tyrosyl-tRNA synthetase forms a mononucleotide-binding fold. J Mol Biol 158: 699-709
Bjork GR, Ericson JU, Gustafsson CE, Hagervall TG, Jonsson YH, Wikstrom PM (1987) Transfer RNA modification. Annu Rev Biochem 56: 263-287
Bjork GR, Jacobsson K, Nilsson K, Johansson MJ, Bystrom AS, Persson OP (2001) A primordial tRNA modification required for the evolution of life? EMBO J 20: 231-239
Brick P, Bhat TN, Blow DM (1989) Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol Biol 208: 83-98
Brick P, Blow DM (1987) Crystal structure of a deletion mutant of a tyrosyl-tRNA synthetase complexed with tyrosine. J Mol Biol 194: 287-297
Brindefalk B, Viklund J, Larsson D, Thollesson M, Andersson SG (2007) Origin and evolution of the mitochondrial aminoacyl-tRNA synthetases. Mol Biol Evol 24: 743-756
Brown JR, Doolittle WF (1995) Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci USA 92: 2441-2445
Brown JR, Doolittle WF (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61: 456-502
Burbaum JJ, Schimmel P (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266: 16965-16968
Carter CW, Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62: 715-748
Caspari T, Dahlen M, Kanter-Smoler G, Lindsay HD, Hofmann K, Papadimitriou K, Sunnerhagen P, Carr AM (2000) Characterization of Schizosaccharomyces pombe Hus1: a PCNA-related protein that associates with Rad1 and Rad9. Mol Cell Biol 20: 1254-1262
Chan KW, Koeppe RE, 2nd (1994) Role of the TIGN sequence in E. coli tryptophanyl-tRNA synthetase. Biochim Biophys Acta 1205: 223-229
Chan KW, Koeppe RE, 2nd (1995) Role of lysine-195 in the KMSKS sequence of E. coli tryptophanyl-tRNA synthetase. FEBS Lett 363: 33-36
Chang CP, Lin G, Chen SJ, Chiu WC, Chen WH, Wang CC (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem 283: 30699-30706
Chang KJ, Lin G, Men LC, Wang CC (2006) Redundancy of non-AUG initiators. A clever mechanism to enhance the efficiency of translation in yeast. J Biol Chem 281: 7775-7783
Chang KJ, Wang CC (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279: 13778-13785
Chatton B, Walter P, Ebel JP, Lacroute F, Fasiolo F (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263: 52-57
Chen SJ, Ko CY, Yen CW, Wang CC (2009) Translational efficiency of redundant ACG initiator codons is enhanced by a favorable sequence context and remedial initiation. J Biol Chem 284: 818-827
Chiu WC, Chang CP, Wang CC (2009) Evolutionary Basis of Converting a Bacterial tRNA Synthetase into a Yeast Cytoplasmic or Mitochondrial Enzyme. J Biol Chem 284: 23954-23960
Chu WC, Feiz V, Derrick WB, Horowitz J (1992) Fluorine-19 nuclear magnetic resonance as a probe of the solution structure of mutants of 5-fluorouracil-substituted Escherichia coli valine tRNA. J Mol Biol 227: 1164-1172
Chu WC, Horowitz J (1991) Recognition of Escherichia coli valine transfer RNA by its cognate synthetase: a fluorine-19 NMR study. Biochemistry 30: 1655-1663
Commans S, Blanquet S, Plateau P (1995) A single substitution in the motif 1 of Escherichia coli lysyl-tRNA synthetase induces cooperativity toward amino acid binding. Biochemistry 34: 8180-8189
Cusack S (1997) Aminoacyl-tRNA synthetases. Curr Opin Struct Biol 7: 881-889
David A, Netzer N, Strader MB, Das SR, Chen CY, Gibbs J, Pierre P, Bennink JR, Yewdell JW (2011) RNA-binding targets aminoacyl-tRNA-synthetases to translating ribosomes. J Biol Chem
Davis DR, Veltri CA, Nielsen L (1998) An RNA model system for investigation of pseudouridine stabilization of the codon-anticodon interaction in tRNALys, tRNAHis and tRNATyr. J Biomol Struct Dyn 15: 1121-1132
Delarue M, Moras D (1993) The aminoacyl-tRNA synthetase family: modules at work. Bioessays 15: 675-687
Delorme C, Ehrlich SD, Renault P (1992) Histidine biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol 174: 6571-6579
Deutscher MP (1990) Ribonucleases, tRNA nucleotidyltransferase, and the 3' processing of tRNA. Prog Nucleic Acid Res Mol Biol 39: 209-240
Dietrich A, Weil JH, Marechal-Drouard L (1992) Nuclear-encoded transfer RNAs in plant mitochondria. Annu Rev Cell Biol 8: 115-131
Edvardson S, Shaag A, Kolesnikova O, Gomori JM, Tarassov I, Einbinder T, Saada A, Elpeleg O (2007) Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81: 857-862
Eriani G, Cavarelli J, Martin F, Dirheimer G, Moras D, Gangloff J (1993) Role of dimerization in yeast aspartyl-tRNA synthetase and importance of the class II invariant proline. Proc Natl Acad Sci USA 90: 10816-10820
Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347: 203-206
Evan GI, Lewis GK, Ramsay G, Bishop JM (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5: 3610-3616
Fersht AR, Ashford JS, Bruton CJ, Jakes R, Koch GL, Hartley BS (1975) Active site titration and aminoacyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry 14: 1-4
First EA, Fersht AR (1995) Analysis of the role of the KMSKS loop in the catalytic mechanism of the tyrosyl-tRNA synthetase using multimutant cycles. Biochemistry 34: 5030-5043
Francin M, Kaminska M, Kerjan P, Mirande M (2002) The N-terminal domain of mammalian Lysyl-tRNA synthetase is a functional tRNA-binding domain. J Biol Chem 277: 1762-1769
Francin M, Mirande M (2006) Identity elements for specific aminoacylation of a tRNA by mammalian lysyl-tRNA synthetase bearing a nonspecific tRNA-interacting factor. Biochemistry 45: 10153-10160
Francklyn C, Perona JJ, Puetz J, Hou YM (2002) Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. RNA 8: 1363-1372
Frechin M, Kern D, Martin RP, Becker HD, Senger B (2010) Arc1p: anchoring, routing, coordinating. FEBS Lett 584: 427-433
Frechin M, Senger B, Braye M, Kern D, Martin RP, Becker HD (2009) Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev 23: 1119-1130
Fukai S, Nureki O, Sekine S, Shimada A, Tao J, Vassylyev DG, Yokoyama S (2000) Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell 103: 793-803
Fukai S, Nureki O, Sekine S, Shimada A, Vassylyev DG, Yokoyama S (2003) Mechanism of molecular interactions for tRNA(Val) recognition by valyl-tRNA synthetase. RNA 9: 100-111
Giege R, Puglisi JD, Florentz C (1993) tRNA structure and aminoacylation efficiency. Prog Nucleic Acid Res Mol Biol 45: 129-206
Giege R, Sissler M, Florentz C (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26: 5017-5035
Gillet S, Hoang CB, Schmitter JM, Fukui T, Blanquet S, Hountondji C (1996) Affinity labeling of Escherichia coli histidyl-tRNA synthetase with reactive ATP analogues. Identification of labeled amino acid residues by matrix assisted laser desorption-ionization mass spectrometry. Eur J Biochem 241: 133-141
Godinic V, Mocibob M, Rocak S, Ibba M, Weygand-Durasevic I (2007) Peroxin Pex21p interacts with the C-terminal noncatalytic domain of yeast seryl-tRNA synthetase and forms a specific ternary complex with tRNA(Ser). FEBS J 274: 2788-2799
Green R, Noller HF (1997) Ribosomes and translation. Annu Rev Biochem 66: 679-716
Hashimoto T, Sanchez LB, Shirakura T, Muller M, Hasegawa M (1998) Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proc Natl Acad Sci USA 95: 6860-6865
Hasslacher M, Ivessa AS, Paltauf F, Kohlwein SD (1993) Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem 268: 10946-10952
Hellmuth K, Lau DM, Bischoff FR, Kunzler M, Hurt E, Simos G (1998) Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol Cell Biol 18: 6374-6386
Helm M, Brule H, Friede D, Giege R, Putz D, Florentz C (2000) Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA 6: 1356-1379
Hoagland M (1996) Biochemistry or molecular biology? the discovery of 'soluble RNA'. Trends Biochem Sci 21: 77-80
Hoagland MB, Stephenson ML, Scott JF, Hecht LI, Zamecnik PC (1958) A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem 231: 241-257
Hoja U, Marthol S, Hofmann J, Stegner S, Schulz R, Meier S, Greiner E, Schweizer E (2004) HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae. J Biol Chem 279: 21779-21786
Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A (1965) Structure of a Ribonucleic Acid. Science 147: 1462-1465
Horowitz J, Chu WC, Derrick WB, Liu JC, Liu M, Yue D (1999) Synthetase recognition determinants of E. coli valine transfer RNA. Biochemistry 38: 7737-7746
Hou YM (1997) Discriminating among the discriminator bases of tRNAs. Chem Biol 4: 93-96
Ibba M, Curnow AW, Soll D (1997) Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends Biochem Sci 22: 39-42
Ibba M, Kast P, Hennecke H (1994) Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry 33: 7107-7112
James PA, Cader MZ, Muntoni F, Childs AM, Crow YJ, Talbot K (2006) Severe childhood SMA and axonal CMT due to anticodon binding domain mutations in the GARS gene. Neurology 67: 1710-1712
Johanson K, Hoang T, Sheth M, Hyman LE (2003) GRS1, a yeast tRNA synthetase with a role in mRNA 3' end formation. J Biol Chem 278: 35923-35930
Jordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, Dierick I, Jacobs A, De Vriendt E, Guergueltcheva V, Rao CV, Tournev I, Gondim FA, D'Hooghe M, Van Gerwen V, Callaerts P, Van Den Bosch L, Timmermans JP, Robberecht W, Gettemans J, Thevelein JM, De Jonghe P, Kremensky I, Timmerman V (2006) Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet 38: 197-202
Kaminska M, Deniziak M, Kerjan P, Barciszewski J, Mirande M (2000) A recurrent general RNA binding domain appended to plant methionyl-tRNA synthetase acts as a cis-acting cofactor for aminoacylation. EMBO J 19: 6908-6917
Kaminska M, Havrylenko S, Decottignies P, Gillet S, Le Marechal P, Negrutskii B, Mirande M (2009a) Dissection of the structural organization of the aminoacyl-tRNA synthetase complex. J Biol Chem 284: 6053-6060
Kaminska M, Havrylenko S, Decottignies P, Le Marechal P, Negrutskii B, Mirande M (2009b) Dynamic Organization of Aminoacyl-tRNA Synthetase Complexes in the Cytoplasm of Human Cells. J Biol Chem 284: 13746-13754
Kaminska M, Shalak V, Mirande M (2001) The appended C-domain of human methionyl-tRNA synthetase has a tRNA-sequestering function. Biochemistry 40: 14309-14316
Kim HS, Hoja U, Stolz J, Sauer G, Schweizer E (2004) Identification of the tRNA-binding protein Arc1p as a novel target of in vivo biotinylation in Saccharomyces cerevisiae. J Biol Chem 279: 42445-42452
Kise Y, Lee SW, Park SG, Fukai S, Sengoku T, Ishii R, Yokoyama S, Kim S, Nureki O (2004) A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase. Nat Struct Mol Biol 11: 149-156
Martinis SA, Schimmel P (1991) In Escherichia coli and Salmonella: Cellular and Molecular Biology, Washington, DC: Am Soc Microbiol. p. 887-901
Kohli J, Kwong T, Altruda F, Soll D, Wahl G (1979) Characterization of a UGA-suppressing serine tRNA from Schizosaccharomyces pombe with the help of a new in vitro assay system for eukaryotic suppressor tRNAs. J Biol Chem 254: 1546-1551
Lee SW, Cho BH, Park SG, Kim S (2004) Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci 117: 3725-3734
Lengyel P (1966) Problems in protein biosynthesis. J Gen Physiol 49: 305-330
Lenhard B, Filipic S, Landeka I, Skrtic I, Soll D, Weygand-Durasevic I (1997) Defining the active site of yeast seryl-tRNA synthetase. Mutations in motif 2 loop residues affect tRNA-dependent amino acid recognition. J Biol Chem 272: 1136-1141
Li GY, Becam AM, Slonimski PP, Herbert CJ (1996) In vitro mutagenesis of the mitochondrial leucyl tRNA synthetase of Saccharomyces cerevisiae shows that the suppressor activity of the mutant proteins is related to the splicing function of the wild-type protein. Mol Gen Genet 252: 667-675
Li Z, Deutscher MP (1996) Maturation pathways for E. coli tRNA precursors: a random multienzyme process in vivo. Cell 86: 503-512
Liu M, Chu WC, Liu JC, Horowitz J (1997) Role of acceptor stem conformation in tRNAVal recognition by its cognate synthetase. Nucleic Acids Res 25: 4883-4890
Lu Y, Hill KA (1994) The invariant arginine in motif 2 of Escherichia coli alanyl-tRNA synthetase is important for catalysis but not for substrate binding. J Biol Chem 269: 12137-12141
Ludmerer SW, Schimmel P (1987) Construction and analysis of deletions in the amino-terminal extension of glutamine tRNA synthetase of Saccharomyces cerevisiae. J Biol Chem 262: 10807-10813
Ludmerer SW, Wright DJ, Schimmel P (1993) Purification of glutamine tRNA synthetase from Saccharomyces cerevisiae. A monomeric aminoacyl-tRNA synthetase with a large and dispensable NH2-terminal domain. J Biol Chem 268: 5519-5523
Lund E, Dahlberg JE (1998) Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282: 2082-2085
Martinis SA, Plateau P, Cavarelli J, Florentz C (1999) Aminoacyl-tRNA synthetases: a family of expanding functions. Mittelwihr, France, October 10-15, 1999. EMBO J 18: 4591-4596
McClain WH (1993) Transfer RNA identity. FASEB J 7: 72-78
Mirande M (1991) Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol 40: 95-142
Mirande M, Lazard M, Martinez R, Latreille MT (1992) Engineering mammalian aspartyl-tRNA synthetase to probe structural features mediating its association with the multisynthetase complex. Eur J Biochem 203: 459-466
Mohr G, Rennard R, Cherniack AD, Stryker J, Lambowitz AM (2001) Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. J Mol Biol 307: 75-92
Motorin Y, Helm M (2010) tRNA stabilization by modified nucleotides. Biochemistry 49: 4934-4944
Motorin YA, Wolfson AD, Lohr D, Orlovsky AF, Gladilin KL (1991) Purification and properties of a high-molecular-mass complex between Val-tRNA synthetase and the heavy form of elongation factor 1 from mammalian cells. Eur J Biochem 201: 325-331
Natsoulis G, Hilger F, Fink GR (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243
Negrutskii BS, Deutscher MP (1991) Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc Natl Acad Sci USA 88: 4991-4995
Normanly J, Abelson J (1989) tRNA identity. Annu Rev Biochem 58: 1029-1049
Pallanck L, Schulman LH (1991) Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine, and phenylalanine in vivo. Proc Natl Acad Sci USA 88: 3872-3876
Park SG, Ewalt KL, Kim S (2005) Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: new perspectives on housekeepers. Trends Biochem Sci 30: 569-574
Park SG, Schimmel P, Kim S (2008) Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci USA 105: 11043-11049
Pelchat M, Lapointe J (1999) Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation. Biochem Cell Biol 77: 343-347
Perez-Vazquez V, Uribe S, Velazquez-Arellano A (2005) Effects of biotin on growth and protein biotinylation in Saccharomyces cerevisiae. J Nutr Biochem 16: 438-440
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551-3567
Perona JJ, Rould MA, Steitz TA (1993) Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase. Biochemistry 32: 8758-8771
Phalip V, Kuhn I, Lemoine Y, Jeltsch JM (1999a) Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake. Gene 232: 43-51
Phalip V, Lemoine Y, Jeltsch JM (1999b) Cloning of Schizosaccharomyces pombe bio2 by heterologous complementation of a Saccharomyces cerevisiae mutant. Curr Microbiol 39: 348-0350
Pirner HM, Stolz J (2006) Biotin sensing in Saccharomyces cerevisiae is mediated by a conserved DNA element and requires the activity of biotin-protein ligase. J Biol Chem 281: 12381-12389
Quigley GJ, Suddath FL, McPherson A, Kim JJ, Sneden D, Rich A (1974) The molecular structure of yeast phenylalanine transfer RNA in monoclinic crystals. Proc Natl Acad Sci USA 71: 2146-2150
Ribas de Pouplana L, Schimmel P (1997) Reconstruction of quaternary structures of class II tRNA synthetases by rational mutagenensis of a conserved domain. Biochemistry 36: 15041-15048
Ribas de Pouplana L, Turner RJ, Steer BA, Schimmel P (1998) Genetic code origins: tRNAs older than their synthetases? Proc Natl Acad Sci USA 95: 11295-11300
Robertus JD, Ladner JE, Finch JT, Rhodes D, Brown RS, Clark BF, Klug A (1974) Structure of yeast phenylalanine tRNA at 3 A resolution. Nature 250: 546-551
Rozenski J, Crain PF, McCloskey JA (1999) The RNA Modification Database: 1999 update. Nucleic Acids Res 27: 196-197
Saks ME, Sampson JR, Abelson JN (1994) The transfer RNA identity problem: a search for rules. Science 263: 191-197
Sampath P, Mazumder B, Seshadri V, Gerber CA, Chavatte L, Kinter M, Ting SM, Dignam JD, Kim S, Driscoll DM, Fox PL (2004) Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell 119: 195-208
Sarkar S, Azad AK, Hopper AK (1999) Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96: 14366-14371
Schafer B (2003) Genetic conservation versus variability in mitochondria: the architecture of the mitochondrial genome in the petite-negative yeast Schizosaccharomyces pombe. Curr Genet 43: 311-326
Scheper GC, van der Klok T, van Andel RJ, van Berkel CG, Sissler M, Smet J, Muravina TI, Serkov SV, Uziel G, Bugiani M, Schiffmann R, Krageloh-Mann I, Smeitink JA, Florentz C, Van Coster R, Pronk JC, van der Knaap MS (2007) Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 39: 534-539
Schimmel P, Wang CC (1999) Getting tRNA synthetases into the nucleus. Trends Biochem Sci 24: 127-128
Schimmel PR, Soll D (1979) Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem 48: 601-648
Schmitt E, Meinnel T, Blanquet S, Mechulam Y (1994) Methionyl-tRNA synthetase needs an intact and mobile 332KMSKS336 motif in catalysis of methionyl adenylate formation. J Mol Biol 242: 566-576
Schmitt E, Panvert M, Blanquet S, Mechulam Y (1995) Transition state stabilization by the 'high' motif of class I aminoacyl-tRNA synthetases: the case of Escherichia coli methionyl-tRNA synthetase. Nucleic Acids Res 23: 4793-4798
Schurer H, Schiffer S, Marchfelder A, Morl M (2001) This is the end: processing, editing and repair at the tRNA 3'-terminus. Biol Chem 382: 1147-1156
Seburn KL, Nangle LA, Cox GA, Schimmel P, Burgess RW (2006) An active dominant mutation of glycyl-tRNA synthetase causes neuropathy in a Charcot-Marie-Tooth 2D mouse model. Neuron 51: 715-726
Shalak V, Kaminska M, Mitnacht-Kraus R, Vandenabeele P, Clauss M, Mirande M (2001) The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem 276: 23769-23776
Sheppard K, Akochy PM, Salazar JC, Soll D (2007) The Helicobacter pylori amidotransferase GatCAB is equally efficient in glutamine-dependent transamidation of Asp-tRNAAsn and Glu-tRNAGln. J Biol Chem 282: 11866-11873
Simos G, Sauer A, Fasiolo F, Hurt EC (1998) A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol Cell 1: 235-242
Simos G, Segref A, Fasiolo F, Hellmuth K, Shevchenko A, Mann M, Hurt EC (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J 15: 5437-5448
Souciet G, Menand B, Ovesna J, Cosset A, Dietrich A, Wintz H (1999) Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur J Biochem 266: 848-854
Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 26: 148-153
Stolz J (2003) Isolation and characterization of the plasma membrane biotin transporter from Schizosaccharomyces pombe. Yeast 20: 221-231
Stucka R, Dequin S, Salmon JM, Gancedo C (1991) DNA sequences in chromosomes II and VII code for pyruvate carboxylase isoenzymes in Saccharomyces cerevisiae: analysis of pyruvate carboxylase-deficient strains. Mol Gen Genet 229: 307-315
Suddath FL, Quigley GJ, McPherson A, Sneden D, Kim JJ, Kim SH, Rich A (1974) Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0angstroms resolution. Nature 248: 20-24
Sumrada RA, Cooper TG (1982) Urea carboxylase and allophanate hydrolase are components of a multifunctional protein in yeast. J Biol Chem 257: 9119-9127
Tamura K, Himeno H, Asahara H, Hasegawa T, Shimizu M (1991) Identity determinants of E. coli tRNA(Val). Biochem Biophys Res Commun 177: 619-623
Tang HL, Yeh LS, Chen NK, Ripmaster T, Schimmel P, Wang CC (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279: 49656-49663
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680
Tumbula DL, Becker HD, Chang WZ, Soll D (2000) Domain-specific recruitment of amide amino acids for protein synthesis. Nature 407: 106-110
Venema RC, Peters HI, Traugh JA (1991) Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity. J Biol Chem 266: 12574-12580
Wakasugi K, Schimmel P (1999) Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 284: 147-151
Wang CC, Chang KJ, Tang HL, Hsieh CJ, Schimmel P (2003) Mitochondrial form of a tRNA synthetase can be made bifunctional by manipulating its leader peptide. Biochemistry 42: 1646-1651
Wang CC, Morales AJ, Schimmel P (2000) Functional redundancy in the nonspecific RNA binding domain of a class I tRNA synthetase. J Biol Chem 275: 17180-17186
Wang CC, Schimmel P (1999) Species barrier to RNA recognition overcome with nonspecific RNA binding domains. J Biol Chem 274: 16508-16512
Weixlbaumer A, Murphy FVt, Dziergowska A, Malkiewicz A, Vendeix FA, Agris PF, Ramakrishnan V (2007) Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat Struct Mol Biol 14: 498-502
Wiley DJ, Catanuto P, Fontanesi F, Rios C, Sanchez N, Barrientos A, Verde F (2008) Bot1p is required for mitochondrial translation, respiratory function, and normal cell morphology in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 7: 619-629
Woese CR, Olsen GJ, Ibba M, Soll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64: 202-236
Wu H, Ito K, Shimoi H (2005) Identification and characterization of a novel biotin biosynthesis gene in Saccharomyces cerevisiae. Appl Environ Microbiol 71: 6845-6855
Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82: 4443-4447
Yarus M (1988) tRNA identity: a hair of the dogma that bit us. Cell 55: 739-741
Zhang S, Sanyal I, Bulboaca GH, Rich A, Flint DH (1994) The gene for biotin synthase from Saccharomyces cerevisiae: cloning, sequencing, and complementation of Escherichia coli strains lacking biotin synthase. Arch Biochem Biophys 309: 29-35
指導教授 王健家、王紹文
(Chien-Chia Wang、Shao-Win Wang)
審核日期 2011-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明