博碩士論文 982203019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.149.243.106
姓名 洪子皓(Tzu-hao Hung)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
(Design and Synthesis of Multi-functionalized Heteroleptic Ruthenium Complexes for Dye-sensitized Solar Cell Applications)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池
★ 染料敏化太陽能電池用二茂鐵系統電解質的探討★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池
★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用★ Design and Synthesis of Ruthenium Dyes for High Open-circuit Voltage Dye-sensitized Solar Cells
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本世紀最待解決的議題之一即為再生能源的開發。第三代太陽能電池中的染料敏化太陽能電池( DSSCs )因具有透光性、多色彩、可撓曲及成本低廉等優點,成為近年來科學家研究的重點之ㄧ。本論文探討兩種不同的DSSCs染料的設計。首先是針對調整多功能性輔助配位基合成的釕金屬錯合物:CYC-B12;其次則為使用不對稱型固著配位基所合成的新型釕金屬錯合物分子:CYC-B23。CYC-B12的輔助配位基的結構是雙吡啶上接上thieno[3,2-b]thiophene來延長其共軛長度,末端接上咔唑衍生物DTBC作為推電子基。在此部分我們討論了不同電解質對電池元件之光電特性的影響,另外也利用Transient photoelectrical decay數據來說明電池元件在經過長時間加速老化後元件的表現變差的原因。由CYC-B12搭配高揮發性電解質Z960所組裝的電池元件,其整體光電轉換效率達9.4 %。CYC-B23為使用不對稱型固著配位基Ligand-B23搭配具有EDOT及硫烷鏈的輔助配位基Ligand-B20所合成的非對稱型釕金屬錯合物,本論文證實僅使用單一羧酸基的釕金屬錯合物染料分子仍具有良好的光電轉換效率,經過初步測試,使用CYC-B23所組裝的電池元件,短路電流密度為16.1 mA/cm2;開路電壓為0.754V;ff值為0.65,整體光電轉換效率可達7.91 %。本論文利用NMR鑑定合成的中間產物及最終產物的結構,亦利用理論計算(TDDFT、Semi-empirical ZINDO/1)得知染料分子之HOMOs與LUMOs的軌域分布,以瞭解邊界軌域與錯合物吸光性質之關連性。
摘要(英) The development of renewable energy becomes one of the most important issue in this centry. Dye-sensitized solar cell (DSSC), one of the 3rd generation photovoltaics, has caused lots of attention due to its colorful, flexible, transparent and low cost. In this thesis, we design and synthesis of two Ru-based sensitizers: CYC-B12 and CYC-B23 for DSSC. The ancillary ligand of CYC-B12 use thieno[3,2-b]thiophene to extend the conjugation length and DTBC, the carbazole derivative as a electron donor moiety was added in the terminal. For CYC-B12, we discuss the effects of the electrolyte on the performance of the devices. We also used Transient photoelectrical decay experiments to probe the reason for the decay in performance after aging process. DSSC device using CYC-B12 and the liquid electrolyte, Z960 has the overall power conversion efficiency of 9.4 %. CYC-B23 uses unsymmetrical anchoring ligand Ligand-B23 and ancillary ligand Ligand-B20. We have proved that good power conversion efficiency can be achieved by using ruthenium complex with only one carboxylic acid. With a preliminary testing, the device sensitized by CYC-B23 has a short-circuit photocurrent density of 16.1 mA/cm2, an open-circuit photovoltage of 0.754 V, and a fill factor of 0.65, yielding an overall conversion efficiency (η) of 7.91 %. NMR is employed to identify the structure of Ligand-B12 and Ligand-B23 and the corresponding complexes. Localizations of HOMOs and LUMOs in these sensitizers were calculated using TDDFT、Semi-empirical ZINDO/1. The relationships between the frontier orbitals and the light harvesting capacity of these Ru complexes was discussed.
關鍵字(中) ★ 釕金屬錯合物
★ 太陽能電池
★ 染料
關鍵字(英) ★ Ruthenium
★ solar cells
★ dye
論文目次 目錄
摘要…………………………………………………………………………………. I
Abstract……………………………………………………………………………. II
壹、緒論 1
1-1、前言 1
1-2、太陽能電池的種類 2
1-3、染料敏化太陽能電池(Dye-Sensitized Solar Cells,DSSCs) 2
1-4、染料敏化太陽能電池的工作原理 4
1-5、光電效率的測量 6
1-5-1、IPCE(incident photon to current conversion efficiency) 7
1-5-2、總光電轉換效率( η ) 8
1-6、光敏化劑 -染料概述 8
1-6-1、釕金屬錯合物染料(Ruthenium Metal Complex) 9
1-6-2、輔助配位基 (ancillary ligand)的修飾 11
1-6-2-1、使用疏水性長碳鏈,增加電池元件長時間穩定性 11
1-6-2-2、利用共軛單元,增加染料分子吸光能力 12
1-6-2-3、使用推電子基以加速電子-電洞對的分離 16
1-6-3、固著配位基 (anchoring ligand)的修飾 21
貳、實驗部分 28
2-1 實驗藥品 28
2-2、儀器分析與樣品製備 32
2-2-1、核磁共振光譜儀 (NMR) 32
2-2-2、紫外光/可見光吸收光譜儀 (UV/Vis. Spectrometer) 32
2-2-3、紅外光吸收光譜儀 (FT-IR Spectrometer) 33
2-3、合成步驟 34
2-3-1、4,4-dibromo-2,2-bipyridine的合成 34
2-3-1-1、[2,2’]Bipyridinyl-1,1’-dioxide 的合成 35
2-3-1-2、4,4’-Dinitro-[ 2,2’] bipyridinyl-1,1’-dioxide 的合成 36
2-3-1-3、4,4’-Dibromo- 2,2’ bipyridinyl-1,1’-dioxide 的合成 37
2-3-1-4、4,4’-Dibromo-2,2’-bipyridine的合成 37
2-3-2、Ligand-B12的合成 39
2-3-2-1、2-(thiophen-3-ylthio)acetic acid (Thio-SCA)的合成 42
2-3-2-2、Thieno[3,2-b]thiophen-3(2H)-one (TT-ketone)的合成 43
2-3-2-3、Thieno[3,2-b]thiophene (TT)的合成 45
2-3-2-4、2-Bromothieno[3,2-b]thiophene (Br-TT)的合成 46
2-3-2-5、3,6-bis-t-butyl-9-(2-thieno[3,2-b]thienyl) carbazole (TT-DTBC)的合成 47
2-3-2-6、3,6-bis-t-butyl-9-(8-trimethylstannyl-2-thieno[3,2-b]thienyl) carbazole (TMSn-TT-DTBC)的合成 49
2-3-2-7、Ligand -B12的合成 50
2-3-3、釕錯合物(CYC-B12)的合成 52
2-3-4、Ligand-B23的合成 54
2-3-4-1、2-(3-hexylthiophen-2-yl)-1,3-dioxolane (3-HT-pro)的合成 56
2-3-4-2、(5-(1,3-dioxolan-2-yl)-4-hexylthiophen-2-yl) trimethyl – stannane (TMSn-3-HT-pro)的合成 56
2-3-4-3、4-(5-(1,3-dioxolan-2-yl)-4-hexylthiophen-2-yl)-2-(4- bromo- pyridin-2-yl) pyridine (Br-bpy-3-HT-Pro)的合成 57
2-3-4-4、5-(2-(4-bromopyridin-2-yl)pyridin-4-yl)-3-hexylthiophene-2- carbaldehyde (Br-bpy-3-HT-CHO)的合成 58
2-3-4-5、Trimethyl(5-methylthiophen-2-yl)stannane (TMSn-MT)的合成 59
2-3-4-6、3-hexyl-5-(2-(4-(5-methylthiophen-2-yl)pyridin-2-yl)pyridin- 4-yl)thio phene-2-carbaldehyde (MT-bpy-3HT-CHO)的合成 60
2-3-4-7、(E)-methyl 3-(3-hexyl-5-(2-(4-(5-methylthiophen-2-yl) pyridin-2-yl)pyridin-4-yl)thiophen-2-yl)acrylate (ligand-B23)的合成 61
2-3-5、釕錯合物(CYC-B23)的合成 63
参、結果與討論 64
3-1、CYC-B12染料 64
3-1-1、CYC-B12邊界軌域(frontier orbitals)分佈的理論計算與其光學性質探討 64
3-1-2、CYC-B12邊界軌域(frontier orbitals)之能階位置 68
3-2、使用CYC-B12當光敏化劑所組裝的電池元件之效率探討 70
3-2-1、使用薄的TiO2電極之元件效率探討 70
3-2-2、改變電解質的組成對電池元件效率的影響 72
3-3、由CYC-B12敏化之電池元件的長時間穩定性測試 76
3-4、CYC-B23染料 79
3-5、CYC-B23邊界軌域分佈及吸收光譜的理論計算 80
3-6、使用CYC-B23當光敏化劑所組裝的電池元件之初步測試 86
四、結論 91
伍、參考文獻 92
參考文獻 1. R. F. Service, Science, 2005, 309, 548.
2. J. Potocnik, Science, 2007, 315, 810.
3. Trends in Photovoltaic Applications. Survey report of selected IEA
countries between 1992 and 2007, 2008.
4. I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egass, C. DeHart, J. Scharf, B. E. MCandless, R. Noufi, 2008.
5. http://www.showa-shell.co.jp/.
6. W. Shockley and H. J. Queisser, J. appl. phys., 1961, 510
7. M. A. Green, Third Generation PhotoVoltaics: Advanced Solar Energy Conversion; Springer-Verlag: Berlin, Heidelberg, 2003.
8. B. O’Regan, M. Grätzel, Nature, 1991, 353, 737
9. M. Grätzel, Nature, 2001, 414, 338
10. M. K. Nazeeruddin, A. Kay, L. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382
11. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, M. Grätzel, J. Am. Chem. Soc. , 2005,127, 16835
12. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Y. Han, Jpn. J. Appl. Phys., 2006, 45, L638.
13. Q-J Yu, Y-H Wang, Z-H Yi, N-N Zu, J Zhang, M Zhang, and P Wang ACS Nano, 2010, 4 , 6032–6038
14. M. Matsumura, Y. Nomura, H. Tsubomura, Bull. Chem. Soc. Japan., 1977, 2533
15. Grätzel, M. Acc. Chem. Res. 2009, 42, 1788
16. H. Arakawa, T. Yamaguchi, S. Agatsuma, S. Takanori, Y. Koishi, Proceedings of the 23rd European PhotoVoltaic Solar Energy Conference, Valencia, Spain; 2008.
17. S. Dai, J. Weng, Y. Sui, S. Chen, S. Xiao, Y. Huang, F. Kong, X. Pan, L. Hu, C. Zhang, K. Wang, Inorg. Chim. Acta, 2008, 361, 786.
18. M. Grätzel, Inorg.Chem. 2005, 44, 6841-6851.
19. http://www.energyharvestingjournal.com/glossary/am_designation_297.asp?sessionid=1
20. M. K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte, and M. Grätzel, Chem. Comm. 2003, 1456-1457.
21. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, J. Am. Chem. Soc. 2005, 127, 16835-16847.
22. S. G. Yan and J. T. Hupp, J. Phys. Chem., 1996, 17, 6867
23. P. Wang, S. M. Zakeeruddin, J.-E. Moser, and M. Grätzel, J. Phys. Chem. B, 2003, 107, 13280-13285.
24. P. Wang, S. M. Zakeeruddin, J.-E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, Nature Materials, 2003, 2, 402.
25. C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen, and K.-C. Ho, Angew. Chem. Int. Ed. 2006, 45, 5822–5825.
26. C.-Y. Chen, J.-Y. Li, C.-H. Tsai, C.-G. Wu, S. M. Zakeeruddin, M. Grätzel et al. ACS Nano., 2009, 3, 3103
27. C.-Y. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu, J.-G. Chen, K.-C. Ho, Adv. Mater., 2007, 19, 3888
28. C.-Y. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu, J.-G. Chen, and K.-C. Ho, Adv. Mater. 2007, 19, 3888 –3891.
29. J.-Y. Li, C.-Y. Chen, J.-G. Chen, C.-J. Tan, K.-M. Lee, S.-J. Wu, Y.-L. Tung, H.-H. Tsai, K.-C. Ho and C.-G. Wu, J. Mater. Chem., 2010, 20, 7158–7164
30. C.-Y. Chen, N. Pootrakulchote, S.-J. Wu, M.-K. Wang, J.-Y. Li, J.-H. Tsai, C.-G. Wu, S. M. Zakeeruddin and M. Grätzel, J. Phys. Chem. C 2009, 113, 20752–20757
31. C.Klein, Md. K. Nazeeruddin, J. R. Durrant, M. Grätzel et al., Inorg. Chem., 2005, 44.178
32. A.Mishra, N. Pootrakulchote, M. K. R. Fischer,a C. Klein, Md. K. Nazeeruddin, S. M. Zakeeruddin, P. Bäuerle and M. Grätzel Chem. Commun., 2009, 7146.
33. A. Mishra, N. Pootrakulchote, Mingkui Wang, S-J. Moon, S. M. Zakeeruddin, M. Grätzel and P. Bäuerle, Adv. Funct. Mater., 2011, 21, 963–970
34. S.-J. Wu, C.-Y. Chen, J.-G. Chen, J.-Y. Li, Y.-L. Tung, K.-C. Ho, C.-G. Wu, Dyes and Pigments, 2010, 84, 95–101
35. K. Hara, Z. S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-Oh, C. Kasada, A. Shinpo, S. Suga, J. Phys. Chem. B, 2005, 109, 15476.
36. S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy, M. Grätzel, Chem. Commun., 2008, 5194.
37. S. Kim, J. K. Lee, S. O. Kang, J. Ko, J. H. Yum, S. Fantacci, F. De Angelis, D. Di Censo, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc., 2006, 128, 16701.
38. C.-W. Lee, H.-P. Lu, C.-M. Lan, Y.-L. Huang, Y.-R. Liang, W.-N. Yen, Y.-C. Liu, Y.-S. Lin, R. W.-G. Diau, C.-Y. Yeh, Chem. Eur. J. , 2009, 15, 1403.
39. Y. J. Liu, N. Xiang, X. M. Feng, P. Shen, W. P. Zhou, C. Weng, B. Zhao, S. T. Tan, Chem. Commun., 2009, 2499.
40. I. Murase, and N. Kagaku, Zasshi, 1956, 77, 682
41. G. Mnerker, and F. H. Case, J. Am. Chem. Soc., 1958, 80, 2745.
42. D. Wenkert, and R. B. Woodward, J. Org. Chem., 1983, 48, 283.
43. P. Leriche, J. M. Raimundo, M. Turbiez, V. Monroche, M. Allain, F. X. Sauvage, J. Roncali, P. Frère, P. J. Skabara, J. Mater. Chem., 2003, 13, 1324
44. A. Hameurlaine, W. Dehaen, Tetrahedron Lett. 2003, 44, 957.
45. P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Grätzel, J. Phys. Chem. B, 2003, 107, 14336
46. H. Zabri, I. Gillaizeau, C. A. Bignozzi, S. Caramori, M. F. Charlot, J. Cano-Boquera, and F. Odobel, Inorg. Chem., 2003, 42, 6655.
47. S. Fantacci, F. De Angelis, and A. Selloni, J. Am. Chem. Soc. 2003, 125, 4381.
48. Y. Bai, Y-M. Cao, J. Zhang, Mingkui Wang, R-Z Li, P. Wang, S. M. Zakeeruddin and M. Grätzel, Nature Materials, 2008, 7, 626.
49. O’Regan, B. C.; Lenzmann, F. J. Phys. Chem. B, 2004, 108, 4342.
50. M. Quintana, T. Edvinsson, A. Hagfeldt, G. J. Boschloo, Phys. Chem. C, 2007, 111, 1035.
指導教授 吳春桂(Chun-guey Wu) 審核日期 2011-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明