博碩士論文 982203040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.217.6.114
姓名 李柔盈(Rou-ying Li)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成含腺嘌呤核苷之新型奈米碳管
(Incorporation of Multiple Adenosines onto Carbon Nanotubes)
相關論文
★ 合成醯胺鍵及胺鍵連結之鳥苷與香豆素共軛化合物並探討其構形★ 合成具有抗病毒潛力的香豆素與腺嘌呤、腺苷、 肌苷之胺鍵標靶共軛化合物
★ 合成腺苷與含氮雜環之硫烷鍵共軛化合物作為抗病毒試劑★ 腺苷與香豆素共軛連結化合物之合成與其構形之探討
★ 探討電子效應和立體障礙對於「胺基醇」轉換成烯類化合物之影響★ 探討β胺醇之α碳上立體障礙與電子效應對苯炔誘導形成碳與碳雙鍵反應之影響
★ 研究「二苯並環庚烯」及「脂芳烴」之「阿昔洛韋」共軛化合物 的結構與抗病毒活性的關係★ 合成具有抗腸病毒活性「二苯」及 「亞甲基二苯」與「阿昔洛韋」之共軛化合物
★ 合成脲鍵連結之「去甲替林」與「核苷」 共軛化合物用作抗腸病毒藥劑★ 合成「核苷」與「金剛胺」連結之脲鍵化合物作為抗病毒藥劑
★ 合成含胺基酸酯之「無環鳥苷」與「去甲替林」共軛化合物作為抗腸病毒藥劑★ 探討合成含四級胺鹽之金奈米粒子之條件
★ 苯并咪唑與香豆素共軛連結化合物之合成與其構型之探討★ 合成醯胺鍵結苯并咪唑與香豆素之化合物並探討其構形
★ 設計及合成含藥物之新穎鉑錯合物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,奈米碳管已經被廣泛的應用在藥物載體方面,相較於傳統經血液循環使藥物分散於身體各器官,它可作為藥物載體投遞藥物至目標細胞或器官中,以避免藥物未到達目標細胞時即被免疫系統給代謝掉,提高藥效,因此實驗室設計一含腺嘌呤核苷衍生物之新型奈米碳管,其可作為辨認DNA序列之高專一性載體,將藥物準確投遞至目標細胞,降低藥物之副作用並提高疾病治癒效果。
  其欲修飾至奈米碳管之腺嘌呤核苷衍生物,為利用3’’-O-[(tert-butyl)-di-methylsilyl]-2’’-deoxyadenosine (14)與9-azido-4,7-dioxanonanoic acid (7)進行酯化反應,得到具有azide官能基之5’’-O-(9-azido-4,7-dioxanonanyl)-2’’-deoxy-adenosine (16)。另一方面我們利用p-amino phenyl propargyl ether (19)進行官能基化修飾三鍵基團於奈米碳管上,接著藉由Click化學反應,使其具有azide官能基之腺嘌呤與奈米碳管上之三鍵進行銜接,合成含腺嘌呤核苷衍生物之新型奈米碳管 (2)。
  並藉由紅外線光譜儀、拉曼散射儀器、熱重量損失分析儀及高解析掃描穿透式電子顯微鏡證實已成功得到腺嘌呤核苷衍生物之新型奈米碳管,重要的為Click反應產率為77%,相較於先前實驗室之Click產率提升兩倍,更加印證Click反應產率高、簡單且選擇性好,因而得到高效率之腺嘌呤核苷衍生物奈米碳管,此官能基化之奈米碳管即可應用於辨認疾病目標序列,成為高專一性之藥物投遞載體,優點為可接合上辨認不同疾病之DNA特殊序列,治癒更多疾病,並提高治療效果降低副作用,給予病患治療疾病一線生機。
摘要(英) Carbon nanotubes with their unique pseudo-one-dimensional nanostructures and related electronic, optical, and mechanical properties have been attracting much attention for potential biological applications, such as biosensors, bio-delivery, bio imaging and so on. Recently, carbon nanotubes have been explored as multipurpose innovative carriers for drug delivery and diagnostic applications. In this thesis, recent studies and advances toward bioapplications of carbon nanotubes are reviewed, followed by detailed reports on my research project concerning the use of stable complexes between carbon nanotubes and DNA for gene therapeutic capacity are mentioned.
  In our project, we used 3’’-O-[(tert-butyl)dimethylsilyl]-2’’-deoxyadenosine (14) and 9-azido-4,7-dioxanonanoic acid (7) as our starting materials. The reaction with the adenosine derivative gave 5’’-O-(9-azido-4,7-dioxanonanyl)-2’’-deoxyadenosine (16). After that we successfully functionalized the carbon nanotubes by using the p-amino phenyl propargyl ether (19). Finally the functionalized carbon nanotube derivative (1) coupled with 5’’-O-(9-azido-4,7-dioxanonanyl)-2’’-deoxyadenosine (16) by using click reaction results multi-adenosine derivatives on to carbon nanotubes (2).
  Then we used infrared spectroscopy, Raman spectra, thermogravimetric analysis spectra and HRSTEM spectra to confirm wrapping of multi-adenosine derivatives on to carbon nanotubes. Importantly, when we compared to previous data that the click reaction yield is enhanced to 77%. It indicates that the click reaction is simple and good selectivity with high efficiency. The functionalised carbon nanotubes has high specificity in drug delivery and targetting DNA sequence. The functionalised carbon nanotubes has the advantage to cure the diseases in efficient way with less side effects.
關鍵字(中) ★ 去氧核醣核酸
★ 奈米碳管
★ 藥物載體
★ 腺嘌呤核苷
關鍵字(英) ★ Adenosines
★ DNA
★ drug delivery
★ carbon nanotubes
論文目次 目 錄
中文摘要 ................................................. i
英文摘要 ............................................... iii
縮寫對照表 ............................................... v
謝誌 .................................................... vi
目錄 ................................................... vii
圖目錄 .................................................. xi
表目錄 ................................................. xiv
一、 緒 論 .......................................... 1
二、 結 果 .......................................... 5
2-1 合成具有azide及polyethylene glycol骨架之連結衍生物... 5
2-2 合成具有TBDMS及Boc保護基的腺嘌呤核苷衍生物........... 6
2-3 合成N6,N6-Bis[(tert-butoxy)carbonyl]-5'-O-(9-azido-4,7-dioxanonanyl)-2'-deoxyadenosine (13) ..................... 7
2-4 合成5'-O-(9-Azido-4,7-dioxanonanyl)-2'-deoxyadenosine (16) ..................................................... 9
2-5 合成具有三鍵官能基之奈米碳管 (1) ................... 10
2-6 合成含腺嘌呤核苷衍生物之新型奈米碳管 (2) ........... 18
三、 討 論 ......................................... 23
3-1 無法從N6,N6-Bis[(tert-butoxy)carbonyl]-5'-O-(9-azido-4,7-di-oxanonanyl)-2'-deoxyadenosine (13)中去除保護基之探討....................................................... 23
3-2 利用共價鍵結(covalently)或非共價鍵結(noncovalently)方式
官能基化修飾奈米碳管差異之探討........................... 25
3-3 三鍵官能基化奈米碳管及含腺嘌呤核苷衍生物之新型奈米碳
管傅立葉轉換紅外線光譜儀之探討.......................... 26
3-4 三鍵官能基化奈米碳管及含腺嘌呤核苷衍生物之新型奈米碳
管拉曼散射圖譜之探討.................................... 28
3-5 三鍵官能基化奈米碳管及含腺嘌呤核苷衍生物之新型奈米碳
管重量百分比之探討...................................... 30
3-6 含腺嘌呤核苷衍生物之新型奈米碳管上腺嘌呤核苷衍生物
間距之探討............................................... 32
3-7 提升腺嘌呤核苷衍生物於奈米碳管表面佔有比例之探討.... 36
3-8 三鍵官能基化奈米碳管及含腺嘌呤核苷衍生物之新型奈米
碳管高解析掃描穿透式電子顯微鏡圖譜之探討................. 38
3-9 未修飾之奈米碳管、三鍵官能基化之奈米碳管及含腺嘌呤核
苷衍生物之新型奈米碳管溶解度之探討.................. 40
四、 結 論 ......................................... 43
五、 實 驗 部 分 ................................... 44
N6,N6-Bis[(tert-butoxy)carbonyl]-5'-O-(9-azido-4,7-dioxanonanyl)-3'-O-[(tert-butyl)dimethylsilyl]-2'-deoxyadenosine (12)...................................... 45
N6,N6-Bis[(tert-butoxy)carbonyl]-5'-O-(9-azido-4,7-dioxanonanyl)-2'-deoxyadenosine (13) .................... 46
5'-O-(9-Azido-4,7-dioxanonanyl)-3'-O-[(tert-butyl)dimethylsilyl]-2'-deoxyadenosine (15).................... 46
5'-O-(9-Azido-4,7-dioxanonanyl)-2'-deoxyadenosine (16)... 47
Adenosine derivatives-functionalized carbon nanotubes (2)...................................................... 48
六、 參 考 文 獻 ................................... 49
七、 光 譜 ......................................... 55
N6,N6-Bis[(tert-butoxy)carbonyl]-5'-O-(9-azido-4,7-dioxanonanyl)-3'-O-[(tert-butyl)dimethylsilyl]-2'-deoxyadenosine (12) 1H NMR............................... 56
N6,N6-Bis[(tert-butoxy)carbonyl]-5'-O-(9-azido-4,7-dioxanonanyl)-3'-O-[(tert-butyl)dimethylsilyl]-2'-deoxyadenosine (12) 13C NMR.............................. 56
N6,N6-Bis[(tert-butoxy)carbonyl]-5'-O-(9-azido-4,7-dioxanonanyl)-3'-O-[(tert-butyl)dimethylsilyl]-2'-deoxyadenosine (12) IR圖譜............................... 57
N6,N6-Bis[(tert-butoxy)carbonyl]-5'-O-(9-azido-4,7-dioxanonanyl)-2'-deoxyadenosine (13) 1H NMR.............. 57
N6,N6-Bis[(tert-butoxy)carbonyl]-5'-O-(9-azido-4,7-dioxanonanyl)-2'-deoxyadenosine (13) 13C NMR............. 58
N6,N6-Bis[(tert-butoxy)carbonyl]-5'-O-(9-azido-4,7-dioxanonanyl)-2'-deoxyadenosine (13) IR圖譜.............. 58
5'-O-(9-Azido-4,7-dioxanonanyl)-3'-O-[(tert-butyl)dimethylsilyl]-2'-deoxyadenosine (15) 1H NMR............. 59
5'-O-(9-Azido-4,7-dioxanonanyl)-3'-O-[(tert-butyl)dimethylsilyl]-2'-deoxyadenosine (15) 13C NMR............ 59
5'-O-(9-Azido-4,7-dioxanonanyl)-3'-O-[(tert-butyl)dimethylsilyl]-2'-deoxyadenosine (15) IR圖譜............. 60
5'-O-(9-Azido-4,7-dioxanonanyl)-2'-deoxyadenosine (16) 1H NMR...................................................... 60
5'-O-(9-Azido-4,7-dioxanonanyl)-2'-deoxyadenosine (16) 13C NMR...................................................... 61
5'-O-(9-Azido-4,7-dioxanonanyl)-2'-deoxyadenosine (16) IR圖譜....................................................... 61
圖 目 錄
Figure 1. 三鍵官能基化奈米碳管1之IR圖譜.................. 12
Figure 2. 三鍵官能基化奈米碳管1之拉曼圖譜................ 13
Figure 3. 三鍵官能基化奈米碳管1之熱重量損失分析圖譜...... 14
Figure 4. 未修飾奈米碳管(比例尺20 nm)之高解析掃描穿透式
電子顯微鏡圖譜........................................... 15
Figure 5. 未修飾奈米碳管(比例尺100 nm)之高解析掃描穿透式
電子顯微鏡圖譜........................................... 15
Figure 6. 三鍵官能基化奈米碳管1(比例尺為20 nm)之高解析掃
描穿透式電子顯微鏡圖譜................................... 16
Figure 7. 三鍵官能基化奈米碳管1(比例尺為100 nm)之高解析掃
描穿透式電子顯微鏡圖譜................................... 16
Figure 8. 未修飾奈米碳管於DMF溶劑中之分散情形............ 17
Figure 9. 三鍵官能基化奈米碳管於DMF溶劑中之分散情形...... 18
Figure 10.含腺嘌呤核苷衍生物之新型奈米碳管2之IR圖譜...... 20
Figure 11.含腺嘌呤核苷衍生物之新型奈米碳管2之拉曼圖譜.... 20
Figure 12.含腺嘌呤核苷衍生物之新型奈米碳管2熱重量損失分析圖譜....................................................... 21
Figure 13.含腺嘌呤核苷衍生物之新型奈米碳管2 (比例尺為20 nm)
之高解析掃描穿透式電子顯微鏡圖譜......................... 21
Figure 14.含腺嘌呤核苷衍生物之新型奈米碳管2 (比例尺為20 nm)
之高解析掃描穿透式電子顯微鏡圖譜......................... 22
Figure 15.含腺嘌呤核苷衍生物之新型奈米碳管2於DMF溶劑中之分散情形..................................................... 22
Figure 16. Liu, Z.教授團隊於2008年所發表之藉由吸附能力修飾奈米碳管示意圖............................................. 25
Figure 17. Ojima, I.教授團隊於2008年所發表之藉由共價鍵結方式
修飾奈米碳管示意圖....................................... 26
Figure 18.未修飾奈米碳管 (a)、三鍵官能基化奈米碳管1 (b)、含腺嘌呤核苷衍生物之新型奈米碳管2 (c)之傅立葉轉換紅外線光譜疊圖....................................................... 27
Figure 19.未修飾奈米碳管 (a)、三鍵官能基化奈米碳管1 (b)、含腺嘌呤核苷衍生物之新型奈米碳管2 (c)之拉曼散射疊圖........ 29
Figure 20.未修飾奈米碳管 (a)、三鍵官能基化奈米碳管1 (b)、含腺嘌呤核苷衍生物之新型奈米碳管2 (c)之熱重量損失分
析圖譜疊圖............................................... 30
Figure 21.含腺嘌呤核苷衍生物之新型奈米碳管2上腺嘌呤核苷衍
生物間距模型............................................. 32
Figure 22.利用多項式回歸方法算出42個碳及54個碳中心至邊界
距離(α) ................................................ 34
Figure 23.腺嘌呤核苷衍生物之間距示意圖................... 35
Figure 24.含腺嘌呤核苷衍生物之新型奈米碳管2與DNA序列纏繞情形之示意圖................................................. 36
Figure 25.未修飾奈米碳管 (a, b)、三鍵官能基化奈米碳管1 (c, d)、含腺嘌呤核苷衍生物之新型奈米碳管2 (e, f)高解析掃描穿透式電子顯微鏡圖譜........................................... 39
Figure 26.未修飾奈米碳管 (1)、三鍵官能基化奈米碳管1 (2)、含腺嘌呤核苷衍生物之新型奈米碳管2 (3)於DMF溶劑中之分散情形....................................................... 41
表 目 錄
Table 1. 去Boc保護基的反應條件........................... 23
Table 2. 利用不同層數之六圓環算出平均碳數及中心至邊界距離(α)..................................................... 33
參考文獻 1. Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.
2. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
3. Iijima, S. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.
4. Bethune, D. S.; Klang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalsyed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605–607.
5. Graff , R. A.;Swanson, T. M.; Strano, M. S. Synthesis of Nickel-Nitrilotriacetic Acid Coupled Single-Walled Carbon Nanotubes for Directed Self-Assembly with Polyhistidine-Tagged Proteins. Chem. Mater. 2008, 20,1824–1829.
6. Bernholc, J.; Brenner, D.; Nardelli, M. B.; Meunier, V.; Roland, C. Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res. 2002, 32, 347–375.
7. Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Wang, F.; Niyogi, S.; Chi, X.; Berger, C.; de Heer, W.; Haddon, R. C. Electro-oxidized Epitaxial Graphene Channel Field-Effect Transistors with Single-Walled Carbon Nanotube Thin Film Gate Electrode. J. Am. Chem. Soc. 2010, 132, 14429–14436.
8. Rinkio, M.; Johansson, A.; Kotimaki, V.; Torma, P. Negative Differential Resistance in Carbon Nanotube Field-Effect Transistors with Patterned Gate Oxide. ACS Nano 2010, 4, 3356–3362.
9. Martinez, M. T.; Tseng, Y. C.; Salvador, J. P.; Marco, M. P.; Ormategui, N.; Loinaz, I.; Bokor, J. Electronic Anabolic Steroid Recognition with Carbon Nanotube Field-Effect Transistors. ACS Nano 2010, 4, 1473–1480.
10. Wen, S.; Koo, S. K.; Yam, C. Y.; Zheng, X.; Yan, Y. J.; Su, Z.; Fan, K.; Cao, L.; Wang, W.; Chen, G. H. Time-Dependent Current Distributions of a Two-Terminal Carbon
Nanotube-Based Electronic Device. J. Phys. Chem. B 2011, 115, 5519–5525.
11. Jackson, R. K.; Munro, A.; Nebesny, K.; Armstrong, N.; Graham, S. Evaluation of Transparent Carbon Nanotube Networks of Homogeneous Electronic Type. ACS Nano 2010, 4, 1377–1384.
12. Wong, S. –S.; Ojima, I. Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery. J. Am. Chem. Soc. 2008, 130, 16778–16785.
13. Prato, M.; Kostarelos, K.; Bianco, A. Functionalized Carbon Nanotubes in Drug Design and Discovery. Acc. Chem. Res. 2008, 41, 60–68.
14. Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug Delivery with Carbon Nanotubes for In vivo Cancer Treatment. Cancer Res. 2008, 68, 6652–6660.
15. Lacerda, L.; Bianco, A.; Prato, M.; Kostarelos, K.Carbon nanotube cell translocation and delivery of nucleic acids in vitro and in vivo. J. Mater. Chem. 2008, 18, 17–22.
16. Bianco, A.; Hoebeke, J.; Godefroy, S.; Chaloin, O.; Pantarotto, D.; Briand, J. P.; Muller, S.; Prato, M.; Partidos, C. D. Cationic Carbon Nanotubes Bind to CpG Oligodeoxynucleotides and Enhance Their Immunostimulatory Properties. J. Am. Chem. Soc. 2005, 127, 58–59.
17. Miyawaki, J.; Yudasaka, M.; Azami, T.; Kubo, Y.; Iijima, S. Toxicity of Single-Walled Carbon Nanohorns. ACS Nano 2008, 2, 213–226.
18. Yang, S. –T.; Fernando, K. A. S.; Liu, J. –H.; Wang, J.; Sun, H. –F.; Liu, Y.; Chen, M.; Huang, Y.; Wang, X.; Wang, H.; Sun, Y. –P. Covalently PEGylated Carbon Nanotubes with Stealth Character In Vivo. Small 2008, 4, 940–944.
19. Shelimov, K. B.; Esenaliev, R. O.; Rinzler, A. G.; Huffman, C. B.; Smalley, R. E. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett. 2002, 355, 279–284.
20. Li, Y. B.; Wei, B. Q.; Liang, J.; Yu, Q.; Wu, D. H. Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 1999, 37, 493–497.
21. Etika, K. C.; Jochum, F. D.; Theato, P.; Grunlan, J. C. Temperature Controlled Dispersion of Carbon Nanotubes in Water with Pyrene-Functionalized Poly(N-cyclopropyl- acrylamide). J. Am. Chem. Soc. 2009, 131, 13598–13599.
22. Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J. H.; Balzano, L.; Resasco, D. E. Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS. J. Phys. Chem. B 2003, 107, 13357–13367.
23. Dyke, C. A.; Tour, J. M. Solvent-Free Functionalization of Carbon Nanotubes. J. Am. Chem. Soc. 2003, 125, 1156–1157.
24. Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. Functionalization of Single-Walled Carbon Nanotubes with (R-)Oxycarbonyl Nitrenes. J. Am. Chem. Soc. 2003, 125, 8566–8580.
25. Liu, Y.; Yao, Z.; Adronov, A. Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polymers by Radical Coupling. Macromolecules 2005, 38, 1172–1179.
26. Buffa, F.; Hu, H.; Resasco, D. E. Side-Wall Functionalization of Single-Walled Carbon Nanotubes with 4-Hydroxymethylaniline Followed by Polymerization of ε-Caprolactone. Macromolecules 2005, 38, 8258–8263.
27. Qin, S.; Qin, D.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods. Macromolecules 2004, 37, 752–757.
28. Kauffman, D. R.; Sorescu, D. C.; Schofield, D. P.; Allen, B. L.; Jordan, K. D.; Star, A. Understanding the Sensor Response of Metal-Decorated Carbon Nanotubes. Nano Lett. 2010, 10, 958–963.
29. Liu, Z.; Davis, C.; Cau, W.; He, L.; Chen, X.; Dai, H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 1410–1415.
30. Palacin, T.; Khanh, H. L.; Jousselme, B.; Jegou, P.; Filoramo, A.; Ehli, C.; Guldi, D. M.; Campidelli, S. Efficient Functionalization of Carbon Nanotubes with Porphyrin Dendrons via Click Chemistry. J. Am. Chem. Soc. 2009, 131, 15394–15402.
31. Li, H.; Cheng, F.; Duft, A. M.; Adronov, A. Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polystyrene by “Click” Coupling. J. Am. Chem. Soc. 2005, 127, 14518–14524.
32. Mei, D. S.; Qu, Y.; He, J. X.; Chen, L.; Yao, Z. J. Syntheses and characterizations of novel pyrrolocoumarin probes for SNAP-tag labeling technology. Tetrahedron 2011, 67, 2251–2259.
33. Wosnick, J. H.; Mello, C. M.; Swager, T. M. Synthesis and Application of Poly(phenylene Ethynylene)s for Bioconjugation: A Conjugated Polymer-Based Fluorogenic Probe for Proteases. J. Am. Chem. Soc. 2005, 127, 3400–3405.
34. Newkome, G. R.; Kotta, K. K.; Mishra, A.;Moorefield, C. N. Synthesis of Water-Soluble, Ester-Terminated Dendrons and Dendrimers Containing Internal PEG Linkages. Macromolecules 2004, 37, 8262–8268.
35. Furrer, E.; Giese, B. On the Distance-Independent Hole Transfer over Long (A‧T)n-Sequences in DNA. Helv. Chim. Acta 2003, 86, 3623–3632.
36. Higashi, T.; Isobe, Y.; Ouchi, H.; Suzuki, H.; Okazaki, Y.; Asakawa, T.; Furuta, T.; Wakimoto, T.; Kan, T. Stereocontrolled Synthesis of (+)-Methoxyphenylkainic Acid and (+)-Phenylkainic Acid. Org. Lett. 2011, 13, 1089–1091.
37. http://pubs.acs.org/page/joceah/submission/authors.html
38. Liu, F.; Liu, J.; Zhao, T. Synthesis of a Novel Series of Propargyloxyphenyl Maleimides and Their Characterization as Thermal-Resistance Resins. J. Appl. Polym. Sci. 2010, 115, 3103–3109.
39. Campidelli, S.; Ballesteros, B.; Filoramo, A.; Diaz, D. D.; de la Torre, G.; Torres, T.; Rahman, G. M. A.; Ehli, C.; Kiessling, D.; Werner, F.; Sgobba, V.; Guldi, D. M.; Cioffi, C.; Prato, M.; Bourgoin, J. P. Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phthalocyanines via “Click Chemistry”. J. Am. Chem. Soc. 2008, 130, 11503–11509.
40. Hwu, J. R.; King, K. Y. Versatile reagent ceric ammonium nitrate in modern chemical synthesis. Curr. Sci. 2001, 81, 1043–1053.
41. Kazzouli, S. E.; Koubachi, J.; Berteina-Raboin, S.; Mouaddibb, A.; Guillaumet, G. A mild and selective method for the N-Boc deprotection by sodium carbonate. Tetrahedron 2006, 47, 8575–8577.
42. Yin, B. L.; Zhang, Y. X. An Unusual N-Boc Deprotection of Benzamides under Basic Conditions. Chin. J. Chem, 2009, 27, 1645–1648.
43. Wu,Y. Q.; Limburg, D. C.; Wilkinson, D. E.; Vaal, M. J.; Hamilton, G. S. A mild deprotection procedure for tert-butyl esters and tert-butyl ethers using ZnBr2 in methylene chloride. Tetrahedron 2000, 41, 2847–2849.
44. Hara, S.; Makino, K.; Hamada, Y. Total synthesis of halipeptin A, a potent anti-inflammatory cyclodepsipeptide from a marine sponge. Tetrahedron 2006, 47, 1081–1085.
45. Accorsi, G.; Armaroli, N.; Parisini, A.; Meneghetti, M.; Marega, R.; Prato, M.; Bonifazi, D. Wet Adsorption of a Luminescent EuIII complex on Carbon Nanotubes Sidewalls. Adv. Funct. Mater. 2007, 17, 2975–2982.
46. Vecitis, C. D.; Gao, G.; Liu, H. Electrochemical Carbon Nanotube Filter for Adsorption, Desorption, and Oxidation of Aqueous Dyes and Anions. J. Phys. Chem. C 2011, 115, 3621–3629.
47. Zhu, J.; Shim, B. S.; Prima, M. D.; Kotov, N. A. Transparent Conductors from Carbon Nanotubes LBL–Assembled with Polymer Dopant with π–π Electron Transfer. J. Am. Chem. Soc. 2011, 133, 7450–7460.
48. Lachman, N.; Bartholome, C.; Miaudet, P.; Maugey, M.; Poulin, P.; Wagner, H. D. Raman Response of Carbon Nanotube/PVA Fibers under Strain. J. Phys. Chem. C 2009, 113, 4751–4754.
49. Yu, B.; Liu, C.; Hou, P. X.; Tian, Y.; Li, S.; Liu, B.; Li, F.; Kauppinen, E. I.; Cheng, H. M. Bulk Synthesis of Large Diameter Semiconducting Single-Walled Carbon Nanotubes by Oxygen-Assisted Floating Catalyst Chemical Vapor Deposition. J. Am. Chem. Soc. 2011, 133, 5232–5235.
50. Odom, T.W.; Huang, J. L.; Kim, P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64.
51. Dresselhaus, M. S.; Dresselhaus, G.; Eklund P. C. Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego 1996 Ch.2 Carbon Materials.
52. Zhao, J.; Buldum, A.; Han, J.; Lu, J. P. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 2002, 13, 195–200.
53. Zhao, J.; Lu, J. P.; Han, J.; Yang, C. K. Noncovalent functionalization of carbon nanotubes by aromatic organic molecules. Appl. Phys. Lett. 2003, 82, 3746–3748.
54. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. J. Am. Chem. Soc. 2005, 127, 210–216.
55. Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. CuI-Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. Eur. J. Org. Chem. 2006, 1, 51–68.
指導教授 胡紀如(Jih Ru Hwu) 審核日期 2011-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明