博碩士論文 992204020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.21.93.44
姓名 胡菽蕓(Sook-Yeng Foo)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 Methylobacterium radiotolerans SH771生長於辛基苯酚的特性 與代謝物分析
(The growth of Methylobacterium radiotolerans SH771 on 4-t-octylphenol and metabolite analysis )
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 烷基苯酚聚氧乙基醇(alkylphenol polyethoxlates, APEOn )為一廣泛使用於工業、農業與家用活動之非離子性界面活性劑,而辛基苯酚(octylphenol)與壬基苯酚(nonylphenol)為這類非離子性界面活性劑在自然界代謝後之主要產物,會擾亂內分泌系統之荷爾蒙分泌、合成、代謝與受體結合,對生物體之成長、發育及生殖等產生不良影響,此類化學物質統稱內分泌干擾物質(Endocrine Disruptors, EDs),俗稱環境荷爾蒙。辛基苯酚與雌激素受體結合能力為烷基苯酚聚氧乙基醇代謝物中之最高者,且誘導魚類產生卵黃前質能力為雌激素之4×10-4倍,雌激素效應是壬基苯酚的十至二十倍,因此本研究以octylphenol為篩選目標。本實驗室先前已篩選出17株能以辛基苯酚為唯一生長碳源之菌株,其中Methylobacterium radiotolerans SH771由含有辛基苯酚的藥罐分離出來,並以此菌株做後續的研究。本研究的目的是利用高效能液相層析質譜儀偵測Methylobacterium radiotolerans SH771的代謝物以探討其代謝途徑。液相層析圖譜中可發現唯一的碳源辛基苯酚濃度隨著培養時間增加而逐漸下降,且發現另一化合物1,2,4-trihydroxybenzene的形成。本研究推測辛基苯酚可能經由兩條路徑分解,其一為中央斷裂成2,4,4-trimethyl-2-pentanol和hydroquinone,另一途徑是經由苯環加氧酵素(Aromatic ring-hydroxylating oxygenase)產生中間代謝物 octylcatechol,再經中央斷裂,使烷基鏈與catechol相接處分開,繼而產生1,2,4-trihydroxybenzene及2,4,4-trimethyl-2-pentanol。Hydroquinone也會代謝成1,2,4-trihydroxybenzene。1,2,4-trihydroxybenzene之後再經由苯環切割酵素(Aromatic ring cleavage oxygenases)將其代謝物開環。中央斷裂和開環都會使其環境荷爾蒙效應去除,達成生物降解途徑之效果。
摘要(英) Alkylphenol polyethoxylates (APEOn) are an important group of non-ionic surfactants used in the agricultural, industrial and domestic detergents, and many other applications. In addition, nonylphenol and octylphenol are known as the major metabolites from APEOn. The prior studies have demonstrated that octylphenol is 10 to 20 folds higher in the estrogenic effect than nonylphenol. 4-t-octylphenol was used as the sole carbon source for the isolation of octylphenol-degrading bacteria in Taiwan. Seventeen octylphenol-degrading bacteria were isolated from paddy farm topsoil, soil microcosm and 4-t-octylphenol reagent bottles by previous works. Methylobacterium radiotolerans SH771 is belong to alpha proteobacteria and was isolated from a reagent bottle containing 4-tert-octylphenol in our lab. In many reports had shown Methylobacterium radiotolerans has biotechnology and bioremediation potential. The aim of this study was to analyze the key metabolites from octylphenol degradation by Methylobacterium radiotolerans SH771 and propose the degradation pathway. Octylphenol and its metabolites were analyzed by high-performance chromatography (HPLC) system equipped with an electrospray ionization-mass spectrometer (MS). The chromatogram was shown the octylphenol gradually decreased with time and produced 1,2,4-trihydroxyenzene. We proposed that the octylphenol can go two pathways then transformed to the ring cleavage compound. The first octylphenol would central cleavage into 2,4,4-trimethyl-2-pentanol and hydroquinone. The other one, octylphenol can via the aromatic ring-hydroxylating oxygenase, multicomponent phenol hydroxylase (Tuan et al., 2011), transformed octylphenol to octylcatechol (OC) then central cleavage to 1,2,4-trihydroxybenzene and 2,4,4-trimethyl-2-pentanol. 1,2,4-trihydroxybenzene is a common metabolite of this two pathway then ortho-cleavage into maleylacetate and meta-cleavage into semialdehyde. The estrogenic activity of octylphenol is decreased due to the central cleavage and ring fission by aromatic ring cleavage dioxygenases because of the collapse of the phenolic and hydrophobic moiety that interact with the estrogen receptor. However, the mechanism is remaining unclear. The octylphenol degradation pathway is anticipated to be completed in Methylobacterium radiotolerans.
關鍵字(中) ★ 生物降解
★ 辛基苯酚
關鍵字(英) ★ biodegradation
★ Methylobacterium radiotolerans
★ Octylphenol
論文目次 Table of contents
中文摘要Ⅰ
AbstractⅡ
Table of contentsⅥ
List of figuresⅦ
List of tableⅨ
AbbreviationsⅩ
Chapter 1: Introduction
1.1 Octylphenol
1.1.1 Structure 1
1.1.2 Sources 1
1.1.3 Distribution 2
1.1.4 Controlling legislation and international agreements3
1.2 Behavior of octylphenol in environment
1.2.1 Physiochemical properties3
1.2.2 Estrogenic activity4
1.2.3 Exposure 5
1.3 Degradation of octylphenol
1.3.1 Biodegradation
1.3.1.1 Fish and mammalians 6
1.3.1.2 Fungi and yeast 7
1.3.1.3 Bacterial strain 8
1.3.2 Non-biodegradation
1.3.2.1 Physical degradation
1.3.2.1.1 Absorption by activated carbon 8
1.3.2.1.2 Rejection by membranes 9
1.3.2.2 Chemical degradation
1.3.2.2.1 Photodegradation
1.3.2.2.1.1 Trivalent iron [Fe(III)]9
1.3.2.2.1.2 Photocatalyst 10
1.3.2.2.1.3 Hydrogen peroxide (H2O2)11
1.3.2.2.1.4 HCO3− and and NO3−11
1.3.2.2.1.5 Dissolved natural organic matter (DNOM)11
1.3.2.2.2 Chemical advanced oxidation(Oxidizer)12
1.3.2.2.3 Ozonation12
1.4 Enzyme
1.4.1 Aromatic ring-hydroxylating oxygenase13
1.4.2 Aromatic ring cleavage dioxygenases13
1.5 Methylobacterium radiotolerans14
1.6 Research aims14
1.7 Study outline15
Chapter 2: Materials and Methods
2.1 Bacterial isolation, culture conditions and characteristic
2.1.1 Isolation 16
2.1.2 Culture media
2.1.2.1 Minimal salts basal (MSB) medium16
2.1.2.2 Minimal salts basal (MSB) plate16
2.1.3 Incubation17
2.1.4 Observation of bacteria17
2.1.5 Identification of bacteria
2.1.5.1 Bacterial growth curve17
2.1.5.2 Phylogenetic analysis18
2.1.5.3 Bacterial growth curve18
2.1.5.4 Substrate utilization18
2.2 Oxygen consumptions18
2.3 Extraction20
2.4 HPLC-MS determination20
2.5 Calibration curve21
2.6 Quantification 21
2.7 Chemicals and instruments
2.7.1 Chemicals 21
2.7.2 Instruments21
Chapter 3: Results
3.1 Morphology of Methylobacterium radiotolerans SH771 23
3.2 Identification of 16S rRNA gene sequencing 23
3.3 Growth Curves
3.3.1 Growth curve of Methylobacterium radiotolerans SH771 24
3.3.2 Growth curves of Methylobacterium radiotolerans SH771 on different substrates 24
3.3.3 Growth curves of Methylobacterium radiotoleransSH771 at different octylphenol concentrations24
3.4 Oxygen consumption25
3.5 Standard curve and quantification25
3.6 Degradation rate of octylphenol by Methylobacterium radiotolerans SH77125
3.7 Analysis of degradation metabolites formed by Methylobacterium radiotolerans SH771 26
3.8 Biodegradation kinetics of octylphenol in Methylobacterium radiotolerans SH771 27
Chapter 4: Discussion28
Chapter 5: Conclusions36
References37
Figures51
Tables79
參考文獻 References
? 林育琦, 2010. Alcaligenes sp. SH542對環境荷爾蒙辛基苯酚的生物降解。國立中央大學生命科學研究所碩士論文。桃園, 台灣。
? 陳美君, 2008. Pseudomonas putida TX2 生長於辛/壬基苯酚之動力學及其鄰二苯酚加氧酵素之表現。國立中央大學生命科學研究所碩士論文。桃園, 台灣。
? Abe, I., 1999. Adsorption properties of endocrine disruptors onto activated carbon. J. Water Waste 41, 43-47 (in Japanese).
? Ahel, M., Scully, F.E., Hiogne, J., and Giger, W., 1994. Photochemical degradation of nonylphenol and nonylphenol polyethoxylates in natural-waters. Chemosphere 28, 1361–1368.
? Ajithkumar, B., Ajithkumar, V.P., Iriye, R., 2003. Degradation of 4-amylphenol and 4- hexylphenol by a new activated sludge isolate of Pseudomonas veronii and proposal for a new subspecies status. Res. Microbiol. 154, 17-23.
? Brand N., Mailhot G., Bolte M., 1998. Degradation photoinduced by Fe(III): method of alkylphenol ethoxylates removal in water. Environ. Sci. Technol. 32, 2715–2720.
? Brand N., Mailhot G., Sarakha M., Bolte M., 2000. Primary mechanism in the degradation of 4-octylphenol photoinduced by Fe(III) in water/acetonitrile solution. J. Photochem. Photobiol., A: Chem 135, 221-228.
? Baptista, M.S., Stoichev, T., Basto, M.C., Vasconcelos, V.M., Vasconcelos, M.T., 2009. Fate and effects of octylphenol in a Microcystis aeruginosa culture medium. Aquat Toxicol, 92, 59-64.
? Brooke, L., Thursby, G.., 2005. Ambient aquatic life water quality criteria for nonylphenol. Washington DC, USA: Report for the United States EPA, Office of Water, Office of Science and Technology.
? Butwell, A.J., Hetheridge, M., James, H.A., Johnson, A.C., Young, W.F., 2002. Endocrine disrupting chemicals in wastewater: A review of occurrence and removal. UK Water Industry Research Limited, London.
? Castillo, M., Penuela, G.., Barcelo, D., 2001. Identification of photocatalytic degradation products of nonionic polyethoxylated surfactants in wastewaters by solid phase extraction followed by liquid chromatography-mass spectrometric detection. Fresenius J. Anal. Chem. 369, 620–628.
? Chang, B.V., Yang, C. M., Cheng, C. H., Yuan, S. Y., 2004a. Biodegradation of phthalate esters by two bacteria strains. Chemosphere 55, 533-538.
? Chang, B.V., Yu, C. H., Yuan, S. Y., 2004b. Degradation of nonylphenol by anaerobic microorganisms from river sediment. Chemosphere 55, 493-500.
? Chapman, P. J., and Ribbons, D. W., 1976. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida. J. Bacteriol. 125, 985-998.
? Chen, M. l., Lee, W. P., Chung, H. Y., Guo, B. R., Mao, I. F. 2004. Biomonitoring of alkylphenols exposure for textile and housekeeping workers. Inter. J. Environ. Anal. Chem. 85, 335-347.
? Chen, M. L., Chang, C. C., Shen, Y. J., Hung, J. H., Guo, B. R.,Chuang, H. Y., Mao, I. F., 2008a. Quantification of prenatal exposure and maternal-fetal transfer of nonylphenol. Chemosphere 73, S239-S245.
? Chen, M. L., Chang, C. C., Shen Y. J., Lee H. Y., Hung, J. H., Guo, B. R., Chuang, H. Y., Mao, I. F., 2008b. Nonylphenol exposure and the health risk for Taiwanese neonate and pubertal students. International conference on environment hormones and health effects 2008.
? Cheng, C. Y., Wu, C.Y. Wang, C.H., Ding, W.H., 2006a. Determination and distribution characteristics of degradation products of nonylphenol polyethoxylates in the rivers of Taiwan. Chemosphere 58, 2275-2281.
? Cheng, C. Y., Liu, L.L., Ding, W.H., 2006b. Occurrence and seasonal variation of alkylphenols in marine organisms from the coast of Taiwan. Chemosphere 65, 2152-2159.
? Corti, A., Frassinetti, S., Vallini, G., D’., Antone, S., Fichi, C., Solaro, R., 1995. Biodegradation of nonionic surfactants. I. Biotransformation of 4-(1-nonyl)phenol by a Candida maltosa isolate. Environ. Pollut. 90, 83-87.
? Corvini, P.F., Meesters, R.J., Schaffer, A., Schroder, H.F., Vinken, R., Hollender, J., 2004a. Degradation of a nonylphenol single isomer by Sphingomonas sp. strain TTNP3 leads to a hydroxylation-induced migration product. Appl Environ Microbiol, 70, 6897-6900.
? Corvini, P.F., Vinken, R., Hommes, G., Mundt, M., Hollender, J., Meesters, R., Schroder, H.F., Schmidt, B., 2004b. Microbial degradation of a single branched isomer of nonylphenol by Sphingomonas TTNP3. Water Sci Technol, 50, 189-194.
? Corvini P. F. X., Vinken R, Hommes G, Schmidt B, Dohmann M., 2004c. Degradation of the radioactive and non-labelled branched 3’,5’-dimethyl 3’-heptyl-phenol nonylphenol isomer by Sphingomonas TTNP3. Biodegradation 15, 9-18.
? Corvini P. F. X., Elend M, Hollender J, Ji R, Preiss A, Vinken R, Schäffer A ., 2005. Metabolism of 4(2’,6’-dimethyl-2’-heptyl)- phenol by Sphingomonas sp. strain TTNP3. Environ Chem Lett 2, 185-189.
? Corvini, P. F. X., Schäffer A., Schlosser D., 2006a. Microbial degradation of nonylphenol and other alkylphenols—our evolving view. Appl Microbiol Biotechnol 72, 223-243.
? Corvini, P.F., Hollender, J., Ji, R., Schumacher, S., Prell, J., Hommes, G., Priefer, U., Vinken, R., Schaffer, A., 2006b. The degradation of alpha-quaternary nonylphenol isomers by Sphingomonas sp. strain TTNP3 involves a type II ipso-substitution mechanism. Appl Microbiol Biotechnol, 70, 114-122.
? Corvini, P.F., Meesters, R., Mundt, M., Schaffer, A., Schmidt, B., Schroder, H.F., Verstraete, W., Vinken, R., Hollender, J., 2007. Contribution to the Detection and Identification of Oxidation Metabolites of Nonylphenol in Sphingomonas sp. strain TTNP3. Biodegradation, 18, 233-245.
? Daidoji, T., Inoue, H., Kato, S., Yokota, H., 2003. Glucuronidation and excretion of nonylphenol in perfused rat liver. Drug Metabolism and Disposition 31, 993–998.
? Daidoji, T., Gozu, K., Iwano, H., Inoue, H., Yokota, H., 2005. UDP-glucuronosyltransferase isoforms catalyzing glucuronidation of hydroxy-polychlorinated biphenyls in rat. Drug Metabolism and Disposition 33, 1466–1476.
? de Vries, Y. P., Takahara, Y., Ikunaga, Y., Ushiba, Y., Hasegawa, M., Kasahara, Y., Shimomura, H., Hayashi, S., Hirai, Y., Ohta, H., 2001. Organic nutrient-dependent degradation of branched nonylphenol by Sphingomonas sp. YT isolated from a river sediment sample. Microbes. Environ. 16, 240-249.
? Dominic, M. J., White, G. F., 1998. Mechanism for biotransformation of nonylphenol polyethoxylates to xenoeatrogens in Pseudomonas putida. J. Bacteriol. 180, 4332-4338
? Dubroca, J., Brault, A., Kollmann, A., Touton, I., Jolivalt, G., Kerhoas L., Mougin C., 2005. Biotransformation of nonylphenol surfactants in soils amended with contaminated sewage sludges. In: Lichtfouse E, Dudd S, Robert D (eds) Environmental chemistry: green chemistry and pollutants in ecosystems. Springer, Berlin Heidelberg New York, pp 305-315..
? Environmental Agency. http://www.environment-agency.gov.uk/business/topics/pollution/39185.aspx
? European Chemicals Bureau, 2002. Existing Chemicals. Ispra, Italy: European Chemical Bureau, European Commission. Available: http://ecb.jrc.it/existing-chemicals/[accessed 9 October 2002].
? Ferguson, P. L., Iden, C. R., Brownawell, B. J., 2001. Distribution and fate of neutral alkylphenol ethoxylate metabolites in a sewage impacted urban estuary. Environ Sci Technol 35, 2428–2435.
? Ferreira-leach A.M.R., Hill E.M., 2000. Bioconcentration and metabolism of 4-tert-octylphenol in roach (Rutilus rutilus) fry. Analusis, 28, N 9.
? Ferris, M.J., Muyzer, G., Ward, D.M., 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62, 340-346.
? Fujii, K., Urano, N., Kimura, S., Nomura, Y., Karube, I., 2000a. Microbial degradation of nonylphenol in some aquatic environments. Fish. Sci. 66, 44-48.
? Fujii, K., Urano, N., Ushio, H., Satomi, M., Iida, H., Ushio-Sata, N., Kimura, S., 2000b. Profile of a nonylphenol-degrading microflora and its potential for bioremedial applications. J. Biochem. 128, 909-916.
? Fujii, K., Urano, N., Ushio, H., Satomi, M., Kimura, S., 2001. Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. Int. J. Syst. Evol. Microbiol. 51, 603-610.
? Fujii, K., Yamamoto, R., Tanaka, T., Hirakawa, T., Kikuchi, S., 2003. Potential of a new biotreatment: Sphingomonas cloacae S-3T degrades nonylphenol in industrial wastewater. J. Ind. Microbiol. Biotechnol. 30, 531-535.
? Fujita, Y., Reinhard M., 1997. Identification of metabolites from the biological transformation of the nonionic surfactant residue octylphenoxyacetic acid and its brominated analog. Environ. Sci. Technol., 31, 1518-1524.
? Gabriel, F. L. P., Giger, W., Guenther, K., Kohler, H.P.E., 2005a. Differential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram. Appl. Environ. Microbiol. 71, 1123-1129.
? Gabriel, F. L. P., Heidlberger, A., Rentsch, D., Giger, W., Guenther, K., Kohler, H.P., 2005b. A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram: ipso-hydroxylation and intramolecular rearrangement. J Biol Chem, 280, 15526-15533.
? Gabriel, F.L., Cyris, M., Jonkers, N., Giger, W., Guenther, K., Kohler, H.P., 2007. Elucidation of the ipso-substitution mechanism for side-chain cleavage of alpha-quaternary 4-nonylphenols and 4-t-butoxyphenol in Sphingobium xenophagum Bayram. Appl Environ Microbiol, 73, 3320-3326.
? Green, P. N., Bousfield I. J., 1982. A taxonomic study on some Gram-negative facultatively methylotrophic bacteria. J. Gen. Microbiol. 128, 623-638.
? Green, P. N., Bousfield I. J., 1983. Emendation of Methylobacterium Patt, Cole and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Lizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int. J. Syst. Bacteriol. 33, 875–877.
? Guenther, K., Heinke, V., Thiele, B., Kleist, E., Prast, H., Raecker, T., 2002. Endocrine disrupting nonylphenols are ubiquitous in food. Environ. Sci. Technol. 36, 1676-1680.
? Hanioka N., Jinno H., Chung Y.-S., Tanaka-Kagawa T., Nishimura T., Ando, M., 1999. Inhibition of rat hepatic cytochrome P450 activities by biodegradation products of 4-tert-octylphenol ethoxylate. Xenobiotica 29, 873–883.
? Hanioka, N., Tanaka-Kagawa, T., Chung, Y. S. Nishimura, T., Jinno, H., Ando.M., 2000a. Changes in Hepatic Cytochrome P450 Enzymes by Biodegradation Products of 4-tert-Octylphenol Polyethoxylate in Rats. Bull. Environ. Contam. Toxicol. 64, 804-810.
? Hanioka N., Jinno H., Chung Y. S., Nishimura,T., Tanaka-Kagawa, T., Ando.M., 2000b. Effect of 4-tert-octylphenol on cytochrome P450 enzymes in rat liver. Arch Toxicol 73, 625-631.
? Harries, J.E., Sheahan, D.A., Jobling, S., Matthiessen, P., Naell, M., 1997. Estrogenic activity in five United Kingdom rivers detected by measurement of vitellogenesis in caged male trout. Environ. Toxicol. Chem. 16, 534–542.
? Heuer, H., Krsek, M., Baker, P., Smalla, K., Wellington, E.M., 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63, 3233-3241.
? Hopper, D.J., Jones, M.R., Causer, M.J., 1985. Periplasmic location of p-cresol methylhydroxylase in Pseudomonas putida. FEBS Lett 182, 485-488.
? House, D. A., 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chem. Rev. 62, 185-203.
? Hsu, W.T., Lin, T.H., Chang, E.E., Hung, C.H., Huang, A.L., Wu, T.C., Lee, Y.H., Su, Y.S., Huang, C.J., 2009. The effect of nonylphenol on the growth of Lactobacillus acidophilus and Bifidobacterium bifidum. J Microbiol Immunol Infect, 42, 451-456.
? Hughes, E.J., Bayly, R.C., Skurray, R.A., 1984. Evidence for isofunctional enzymes in the degradation of phenol, m- and p-toluate, and p-cresol via catechol meta-cleavage pathways in Alcaligenes eutrophus. J. Bacteriol. 158, 79-83.
? Ito, H., Iizuka, H., 1971. Taxonomic studies on a radio-resistant Pseudomonas. XII. Studies on the microorganisms of cereal grain. Agric. Biol. Chem. 35, 1566-1571.
? Jang, S.B., Lee C. A., 2008. Phenotypic characterization of pink pigmented facultative mathylotrophic bacteria from soil exposed to vehicular soot. Phi. J. of Syst. Biol. 2, 1.
? Jiang J. Q., Lloyd B., 2002. Progress in the development and use of ferrate (VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res. 36, 1397-1408.
? Jeong, J.J., Kim, J.H., Kim, C.K., Hwang, I., Lee, K., 2003. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology 149, 3265-3277.
? Jones, K. H., Trudgill, P. W., Hopper, D. J., 1994. 4-Ethylphenol metabolism by Aspergillus fumigatus. Appl. Environ. Microbiol. 60, 1978-1983.
? Jung, Y. J., Kiso, Y., Park, H.J., Nishioka, K. and Min, K.S. 2007. Rejection properties of NF membanes for alkylphenols. Desalination 202, 278-285.
? Junghanns, C., Moeder, M., Krauss, G., Martin, C., Schlosser, D., 2005. Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151, 45-57. DOI 10.1099/ mic.0.27431
? Kohtani, S., Koshiko, M., Kudo, A., Tokumura, K., Ishigaki, Y., Toriba, A., Hayakawa, K., Nakagaki, R., 2003. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl. Catal. B. 46, 573–586.
? Kunito, T., Shibata, S., Matsumoto, S., Oyaizu H., 1997. Zinc resistance of Methylobacterium species. Biosc. Bioech. Biochem., 61, 729-731.
? Lee, P.C., Chakraborty Patra, S., Stelloh, C.T., Lee, W., Struve, M., 1996a. Interaction of nonylphenol and hepatic CYP1A in rats. Biochem. Pharmacol. 52, 885–889..
? Lee, P.C., Chakraborty Patra, S., Struve, M., 1996b. Modulation of rat hepatic CYP3A by nonylphenol. Xenobiotica 26, 831–838.
? Lei L. C., Wang D. H., 2001. Advanced oxidation technologies on wastewater treatment. Beijing, Beijing industrial press 199. (in Chinese).
? Liu, Z.H., Kanjo, Y., Mizutani, S., 2008. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment - physical means, biodegradation, and chemical advanced oxidation: a review. Sci. Total. Environ. 407, 731-748.
? Lu, Y. Y., Chen, M. L., Sung, F. C., Wang, S.G., Mao, I. F., 2007. Daily intake of 4-nonylphenol in Taiwanese. Environment International 33, 903-910.
? Martucci,C. P., Fishman, J., 1993. P450 enzymes of estrogen metabolism, Pharmacol. Therapeut. 57, 237–257.
? Mazellier P., Leverd J., 2003. Transfromation of 4-tert-octylphenol by UV irradiation and by an H2O2/UV process in aqueous solution. Photochem. Photobiol. Sci. 2, 946-953.
? Merimaa, M., Heinaru, E., Liivak, M., Vedler, E., Heinaru, A., 2006. Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol degrading Pseudomonas species and biotypes. Arch. Microbiol. 186, 287-296.
? Montgomery-Brown, J., Reinhard, M., 2003. Occurrence and behavior of alkylphenol polyethoxylates in the environment. Environ. Eng. Sci. 20, 471-486.
? Naylor C.G., Mieure J. P., Adams W. J., Weeks J. A., Castaldi F. J., Ogle L.D., 1992. Alkylphenol ethoxylates in the environment. J. Am. Oil. Chem. Soc.69, 695-703.
? Neamtu, M., Frimmel, F.H., 2006. Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation, Sci. Total. Environ. 369, 295-306.
? Neamtu, M.,Popa, D. M., Frimmel, F. H. 2009. Simulated solar UV-irradiation of endocrine disrupting chemical octylphenol. Journal of Hazardous Materials 164, 1561-1567.
? Nielsen, E., Østergaard, G., Thorup. I., Ladefoged, O., Jelnes, O., Jelnes, J. E., 2000. Toxicological evaluation and limit values for nonylphenol, nonylphenol ethoxylates, tricresyl, phosphates and benzoic acid, The Institute of Food Safety And Toxicology. Danish Veterinary And Food AdministrationEnvironmental Project, 512. Copenhagen, Danish Environmental Protection Agency.
? Ning, B., Graham, N.J.D., Zhang, Y., 2007. Degradation of octylphenol and nonylphenol by ozone – Part I: Direct reaction. Chemosphere 68, 1163-1172.
? Nomura S., Daidoji T., Inoue H., Yokota H., 2008. Differntial metabolism of 4-n- and 4-tert-octylphenols in perfused rat liver. Life Sci. 82, 223-228.
? Nyegen, M.H., Sigoillot, J.C., 1997. Isolation from coastal sea water and characterization f bacterial strains involved in non-ionic surfactant degradation. Biodegradation 7, 369-375.
? Ohe, T., Hirobe, M., Mashino, T., 1997. Substituent elimination from p-substituted phenols by cytochrome P450 ipso-substitution by the oxygen atom of the active species. Drug Metab. Dispos. 25, 116-122.
? Ohe, T., Hirobe, M., Mashino, T., 2000. Novel metabolic pathway of estrone and 17β-estradiol catalyzed by cytochrome P-450. Drug. Metab. Dispos. 28, 110-112.
? Oman ,C., Hynning, P. A., 1993. Identification of organic-compounds in municipal landfill leachates. Environ. Pollut. 80, 265–271.
? O’Reilly, K.T., Crawford, R.L., 1989. Kinetics of p-cresol degradation by an immobilized Pseudomonas sp.. Appl. Environ. Microbiol. 55, 866-870.
? PARCOM 92/8, 2000. Recommendation on nonylphenol-ethoxylates. London, UK. OSPAR Convention.
? Pedersen R.T., Hill E.M., 2000. Identification of novel metabolites of the xenoestrogen 4-tert-octylphenol in primary rat hepatocytes. Chemico-biological interactions 128, 189-209.
? Pluemsab, W., Fukazawa, Y., Furuike, T., Nodasaka, Y., Sakairi, N., 2007. Cyclodextrin-linked alginate beads as supporting materials for Sphingomonas cloacae, a nonylphenol degrading bacteria. Bioresour Technol, 98, 2076-2081.
? Porter, A.W., Hay, A.G., 2007. Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol. Appl Environ Microbiol, 73, 7373-7379.
? Powlowski, J., Shingler, V., 1994. Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5, 219-236.
? Reichlin, F., Kohler, H.P., 1994. Pseudomonas sp. strain HBP1 Prp degrades 2-isopropylphenol (ortho-cumenol) via meta cleavage. Appl. Environ. Microbiol.60, 4587-4591.
? Rieble, S., Joshi, D. K., Gold, M. H., 1994. Purification and characterization of a 1,2,4-trihydroxybenzene 1,2-dioxygenase from the basidiomycete Phanerochaete chrysosporium. J. Bacteriol., 176, 4838-4844.
? Risk & Policy Analysts Limited. 2006. Risk reduction strategy and analysis of advantages and drawbacks for 4-tert-octylphenol final report.
? Romanovskaya, V.A., Sokolov, I.G., Malashenko, Y.R. and Rokitko, P.V. 1998a Mutability of epiphytic and soil bacteria of the genus Methylobacterium and their resistance to ultraviolet and ionizing radiation. Microbiology (New York) 67, 89–97.
? Romanovskaya, V.A., Sokolov, I.G., Rokitko, P.V. and Chernaya, N.A. 1998b. Effect of radioactive contamination on soil bacteria in the 10- km zone around the Chernobyl Nuclear Power Plant. Microbiology (New York) 67, 226–231.
? Romanovskaya, V.A., Rokitko, P.V. and Malashenko, Y.R. 2000. Unique properties of highly radioresistant bacteria. Mikrobiologichnii Zhurnal 62, 40–63.
? Routledge E. J., Sumpter J. P., 1997. Structural Features of Alkylphenolic Chemicals Associated with Estrogenic Activity. The J. of Biol. Chem. 272, 3280–3288.
? Routledge, E.J., Sheahan, D., Desbrow, C., Brighty. G.C., Waldock, M., 1998. Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environ. Sci. Technol. 32, 1559–1565.
? Shibata, N., Matsumoto, J., Nakada, K., Yuasa, A., Yokota, H., 2002. Male-specific suppression of hepatic microsomal UDP-glucuronosyl transferase activities toward sex hormones in the adult male rat administered bisphenol A. Biochem. J. 368, 783–788.
? Schmidt, B., Patti, H., Niewersch, C., Schuphan, I., 2003. Biotransformation of [ring-U-14C] 4-n-nonylphenol by Agrostemma githago cell culture in a two-liquid-phase system. Biotechnol. Lett. 25, 1375-1381.
? Shibata, A., Katayama, A., 2007. Anaerobic co-metabolic oxidation of 4-alkylphenols with medium-length or long alkyl chains by Thauera sp., strain R5. Appl Microbiol Biotechnol, 75, 1151-1161.
? Snyder, S. A., Westerhoff, P., Yoon, Y., Sedlak, D. L., 2003. Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ. Eng. Sci. 20, 449-469.
? Snyder, S.A., Adham, S., Redding, A. M., Cannon, F. S., Decarolis, J., Oppenheimer, J., 2007. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202, 156-181.
? Soares, A., Guieysse, B., Delgado, O., Mattiasson, B., 2003. Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol. Lett. 25, 731-738.
? Soares, A., Jonasson K., Terrazas, E., Guieysse, B., Mattiasson, B., 2005. The ability of white-rot fungi to degrade the endocrine disrupting compound nonylphenol. Appl Microbiol Biotechnol 66, 719-725.
? Soares, A., Guieysse, B., Mattiasson, B., 2006. Influence of agitation on the removal of nonylphenol by the white-rot fungi Trametes versicolor and Bjerkandera sp. BOL 13. Biotechnol Lett 28, 139-143.
? Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., and Lester, J.N., 2008. Nonylphenol in the envinment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ. Int. 34, 1033-1049.
? Sumpter, J. P., Jobling, S., 1993. Male sexual development in a "sea of oestrogen". Lancet 342, 124-125.
? Takeo, M., Nishimura, M., Takahashi, H., Kitamura, C., Kato, D., Negoro, S., 2007. Purification and characterization of alkylcatechol 2,3-dioxygenase from butylphenol degradation pathway of Pseudomonas putida MT4. J. Biosci. Bioeng. 104, 309-314.
? Tanenbum, D. M., Wang, Y., Wiliams, S. P., Sigler, P. B., 1998. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc. Natl. Acad. Sci. U.S.A, 95, 5998-6003.
? Tanghe, T., Devriese, G., Verstraete, W., 1999a. Nonylphenol and estrogenic activity in aquatic environmental samples. J. Environ. Qual. 28, 702-709.
? Tanghe, T., Dhooge, W., Verstraete, W., 1999b. Isolation of a bacterial strain able to degrade branched nonylphenol. Appl. Environ. Microbiol. 65, 746-751.
? Tanghe, T., Dhooge, W., Verstraete, W., 2000. Formation of the metabolic intermediate 2,4,4-trimethyl-2-pentanol during incubation of a Sphingomonas sp. strain with the xeno-estrogenic octylphenol. Biodegradation, 11, 11-9.
? Thibaut, R., Debrauwer, L., Rao, D., Cravedi, J. P., 1998. Characterization of biliary metabolites of 4-n-nonylphenol in rainbow trout (Oncorhynchus mykiss). Xenobiotica 28, 745-757.
? Toyama, T., Maeda, N., Murashita, M., Chang, Y.C., Kikuchi, S., 2009. Isolation and characterization of a novel 2-sec-butylphenol-degrading bacterium Pseudomonas sp strain MS-1. Biodegradation 21, 157-165.
? Tuan, N. N., Hsieh H. C., Lin, Y. W., Huang S. L., 2011. Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresour. Technol. 102, 4232-4240.
? Ushiba, Y., Takahara, Y., Ohta, H., 2003. Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int. J. Syst. Evol. Microbiol. 53, 2045-2048.
? Vallini, G., Frassinetti, S., D’., Andrea, F., Catelani, G., Agnolucci, M., 2001. Biodegradation of 4-(1-nonyl)phenol by axenic cultures of the yeast Candida aquaetextoris: identification of microbial breakdown products and proposal of a possible metabolic pathway. Int. Biodeterior. Biodegrad. 47, 133-140.
? Van der B., Schaep J., Maes W., Wilms D., Vancasteele C., 1998. Nanofiltration as a treatment method for the removal of pesticides from ground waters. Desalination 117, 139-147.
? Viggiani, A., Olivieri, G., Siani, L., Di Donato, A., Marzocchella, A., Salatino, P., Barbieri, P., Galli, E., 2006. An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1. J. Biotechnol. 123, 464-477.
? Webster, J., 1992. Anamorph-teleomorph relationships. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Berlin Heidelberg New York, pp 99-117.
? White, R., Jobling, S., Hoare, S.A., Sumpter, J.P., and Parker, M.G..,1994. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135, 175–182.
? Ying, G. G., Williams B., Kookana R., 2002. Environmental fate of alkylphenols and alkylphenol ethoxylates--- a review. Environ. Inter. 28, 215-226.
? Yokota, H., Iwano, H., Endo, M., Kobayashi, T., Inoue, H., Ikushiro, S., Yuasa, A., 1999. Glucuronidation of the environmental oestrogen bisphenol A by an isoform of UDPglucuronosyltransferase, UGT2B1, in the rat liver. Biochem. J. 340, 405–409.
? Yuan, S.Y., Yu, C.H., Chang, B.V., 2004. Biodegradation of nonylphenol in river sediment. Environ. Pollut. 127, 425-430.
? Zhang Y. P., Zhou J. L., 2008. Occurrence and removal of endocrine disrupting chemicals in wastewater. Chemosphere 73, 848-853.
? Zarnowski, R., Felske, A., Ellis, R.J., Geuns, J.M.C., and Pietr S.J., 2002. A Methylobacterium-like organism from algal crusts covering silicone rubber electric insulators in Africa. J. of Appl. Microbiol. 93, 1012–1019.
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2011-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明