博碩士論文 972404007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.190.156.80
姓名 蕭勝斌(Sheng-Pin Hsiao)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討Bhlhe40 對於肌肉特化性因子的調控機制
(The modulation of myogenic regulatory factor transactivation activity by Bhlhe40)
相關論文
★ Thirst control of water-seeking behavior in Drosophila★ KLHL17在癲癇與自閉症中之角色
★ MyoD對於PGC-1α 基因表現之調控機制★ 雄性素受體對於肌肉前驅細胞決定的功用
★ Nanog和Oct4表現對肌肉分化之影響★ 大量表現幹細胞專有轉錄因子抑制肌肉細胞走向分化
★ FOXOs 轉錄調控因子家族對肌肉細胞末期分化的影響★ 大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化
★ 在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控★ FoxOs 大量表現對肌肉細胞末期分化的影響
★ 觀察肌肉生成轉錄因子如何調控 M- 和N- cadherin 表現★ Oc4和Nanog共同抑制末端肌肉分化
★ FoxO6在肌原母細胞中的代謝及分化中所扮演的角色★ PGC-1α 與 Stra13 間之交互作用
★ 探討大量表現 FoxO6 對肌肉終極分化的影響以及尋找 FoxO6 蛋白質在 PGC-1 alpha 啟動子上的結合位★ 探討丙戊酸 (Valporic acid) 於肌肉細胞中活化 Oct4 promoter 的機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 骨骼肌的分化是經由一連串的複雜的生理反應以及機制所建構而成,成熟的骨骼肌必須具有肌肉收縮調節組織,肌原母細胞的細胞週期停止以及細胞間的融和,而進一步形成具有自主性收縮以及多核的肌肉細胞。這些步驟都受到肌肉特化性因子的調控,而肌肉特化性因子包含MyoD、Myf-5、Myogenin 和MRF4這四個成員。然而在肌肉分化過程中肌肉特化性因子會和 MEF2s 共同活化分化過程中所需的肌肉特化性基因的表現。在本研究中,我們發現Bhlhe40這個基因的表現量會隨著肌肉細胞進行終極分化的過程而逐漸上升,而在之前的研究指出Bhlhe40會廣泛表現於各器官組織中並扮演著轉錄抑制因子的角色,我們同時發現不管是在in vitro 亦或是 in vivo 狀態下Bhlhe40 都會直接結合到 PGC-1α, M-cadherin 和 Myogenin 的啟動子上面並抑制它們的轉錄作用。而且我們發現,當我們加入P/CAF這個重要的肌肉特化性因子共同活化子之後,Bhlhe40 對於肌肉特化性因子轉錄活性的抑制可以被回復。我們更證明 Bhlhe40 抑制肌肉特化性因子轉錄活化 M-cadherin 的表現是透過 HDAC 非依賴型的機制,在探討Bhlhe40 對於 M-cadherin 的轉錄抑制的同時我們發現 Bhlhe40 的 DNA 結合能力對於抑制M-cadherin 的轉錄機制是必須的但是卻還不足夠。然而 Bhlhe40 抑制 M-cadherin 啟動子的活性可能不僅僅只透過Bhlhe40直接結合到 M-cadherin 啟動子上的 E3-box,也有可能是藉由先結合到未知的bHLH 蛋白在進一步傳導抑制的能力。我們現在正嘗試分析這個未知的蛋白,並且未來希望更進一步觀察這些未知的蛋白跟肌肉特化性因子、Bhlhe40、P/CAF 或是其他的共同活化或抑制因子們在肌肉特化性基因啟動子上的相互作用為何? 基於我們對PGC-1α 和 M-cadherin 這兩個基因在轉錄調控機制上的了解,我們猜測MyoD 對於結合序列的專一性以及轉錄活性可能會受到專一結合序列旁的E-boxes 或E-boxes 上的結合蛋白所調節。我們目前正在分析 MyoD 和 Bhlhe40 在整個 genome 的結合情形並試著證明我們的假說。
摘要(英) The differentiation of functional skeletal muscle cells is characterized by the acquirement of contractile filaments, cell cycle exit, and fusion of myoblasts to form voluntarily contractible multinucleated myotubes. This process is critically regulated by a family of basic helix-loop-helix (bHLH) transcription factors, including MyoD, Myf-5, Myogenin and MRF4, called as myogenic regulatory factors (MRFs) that work together with myocyte enhancer factors (MEF2s) to activate the expression of muscle-specific genes required for myogenic differentiation. In this study, we found that the expression level of Bhlhe40, a ubiquitously expressed bHLH transcriptional repressor, was up-regulated during terminal myogenic differentiation and it could repress the MRF-activated transcription of PGC-1α, M-cadherin, and Myogenin by directly binding to their promoters in vitro and in vivo. Furthermore, we found that Bhlhe40-mediated repression of MRF transactivational activity could be relieved by over-expression of P/CAF, an essential coactivator of MRFs. We demonstrated that Bhlhe40 repressed MRF-activated M-cadherin transcription through a HDAC independent pathway and the DNA binding activity of Bhlhe40 was required but not sufficient to repress the M-cadherin expression. We also found that Bhlhe40-mediated repression of M-cadherin promoter activity may not only through its direct binding to the E3-box in the M-cadherin proximal promoter but also could be mediated by unknown bHLH proteins. We are currently identifying the unknown proteins and observing the interaction among MRFs, Bhlhe40, P/CAF, and other co-factors (co-activators or co-repressors) acting on muscle-specific gene promoters. Based on our observations on the regulation of PGC-1α and M-cadherin transcription, we speculate that the specificity of MyoD targeting and transactivation can be significantly determined by the E-boxes and their binding proteins adjacent to the MyoD binding sites. We are currently identifying genome-wide targeting sites of both MyoD and Bhlhe40 to prove this hypothesis.
關鍵字(中) ★ 肌原母細胞
★ 肌肉特化性因
★ 啟動子
關鍵字(英) ★ P/CAF
★ m-cadherin
★ Bhlhe40
論文目次 Declaration I
Acknowledgements III
Publications arising from this thesis V
Abstract VI
中文摘要 VIII
Table of contents X
Chapter I: General Introduction 1
MRF family 1
Classification of bHLH proteins 4
The Cadherin family and general function 7
The role of M-cadherin during myogenesis. 10
N-cadherin and its importance in terminal differentiation 12
The molecular characteristics of Bhlhe40 13
Transcriptional Cofactors 17
Figures 20
Figure I-1.Transcriptional hierarchy regulating the developmental program of myogenic progenitor cell. 20
Figure I-2. A schema of the phylogenic group of bHLH proteins. 21
Figure I-3. The schematic of classical cadherin mediated homophilic binding and the structure of cadherin-catenin complex. 22
Figure I-4. The Structure of skeletal muscle and the localization of M-cadherin positive satellite cells in adult rat skeletal muscle. 23
Figure I-5. Sequence alignment of mBhlhe40 and Bhlhe41. 24
Figure I-6. Table of the different way of Bhlhe40 to repress the transcription machinery. 25
Figure I-7. Chromatin remodeling at myogenic genes during myogenesis. 26
Chapter II: Materials and Methods 27
Construction of Plasmids 27
Cell Culture and Transient Transfection 28
Quantitative real-time RT-PCR 29
Electrophoresis Mobility Shift Assay (EMSA) 30
Chromatin immunoprecipitation assay 31
Western blot analysis 32
Immunofluorescence assay 33
Chapter III: Myogenic regulator factors regulate M-cadherin expression by targeting its proximal promoter. 34
Rationale 34
Results 36
Discussion 41
Figures 44
Figure III-1. The expression of M-cadherin is strikingly activated during terminal differentiation in vitro and in vivo. 45
Figure III-2. The expression of M-cadherin is activated by MRFs not MEF2. 47
Figure III-3. Defining the MyoD binding sites in M-cadherin promoters by 5’ and 3’ series deletions. 50
Figure III-4. The E4-box of M-cadherin proximal promoter is the most important MyoD targeting sites. 52
Figure III-5. MRF proteins bind directly to the E3- and E4-boxes in vitro. 55
Figure III-6. Bhlhe40 directly binds to the M-cadherin promoter and represses the MyoD transactivation. 59
Figure III-7. Both Bhlhe40 and MRFs bind to M-cadherin promoter in vivo. 60
Figure III-8. The conserved downstream element (CDE) plays essential role in MyoD transactivation. 62
Chapter IV: P/CAF rescues the Bhlhe40-mediated repression of MyoD transactivation 63
Rationale 63
Results 65
Discussion 69
Figures 72
Figure IV-1. The expression of the PGC-1 family, MyoD, Myogenin, P/CAF and Bhlhe40 during myogenesis. 72
Figure IV-2. Bhlhe40 directly binds to E1-Box of the PGC-1α promoter 75
Figure IV-3. The MyoD-mediated transactivation of PGC-1α and PRC promoters is repressed by Bhlhe40. 76
Figure IV-4. MyoD-mediated transactivation of myogenic gene promoters is abolished by Bhlhe40. 78
Figure IV-5. P/CAF rescues Bhlhe40-mediated repression of MyoD transactivation. 80
Figure IV-6. MyoD, Myogenin and Bhlhe40 bind to PGC-1α and Myogenin promoters in vivo. 82
Chapter V: The modulation of myogenic regulatory factor transactivation activity by Bhlhe40 83
Rationale 83
Results 85
Discussion 90
Figures 93
Figure V-1. DNA binding is not sufficient for Bhlhe40 to repress M-cadherin promoter activity. 94
Fig V-2. Bhlhe40-mediated repression of MyoD transactivation of M-cadherin promoter was HDAC independent. 95
Figure V-3. The E3-box is needed for Bhlhe40-mediated M-cadherin promoter activity repression. 98
Figure V-4. Identifying Bhlhe40 complex in Flag-Bhlhe40 overexpress C2C12 cells. 100
Figure V-5. Genome-wide analysis of Bhlhe40 targeting sites by ChIP on chip. 105
Figure V-6. Screening for the dominant negative effect from Bhlhe40 mutants. 108
Chapter VI: General discussion 109
References 116
Tables 137
Table 1: Primer sets used for amplifying M-cadherin promoter regions 137
Table 2. RT-PCR primers 139
Table 3: Primer sets used for amplifying Bhlhe40 and its mutation clone 141
參考文獻 Aberle H, Butz S, Stappert J, Weissig H, Kemler R, Hoschuetzky H (1994). Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 107 ( Pt 12): 3655-3663.
Angst BD, Marcozzi C, Magee AI (2001). The cadherin superfamily: diversity in form and function. J Cell Sci 114: 629-641.
Antje Bornemann HS (1994). Immunocytochemistry of M-cadherin in mature and regenerating rat muscle. The Anatomical Record 239: 119-125.
Antonevich T, Taneja R (1999). Assignment1 of the human Stra13 gene (STRA13) to chromosome 3p26 by in situ hybridization. Cytogenet Cell Genet 85: 254-255.
Arany PR, Nayak RS, Hallikerimath S, Limaye AM, Kale AD, Kondaiah P (2007). Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound Repair Regen 15: 866-874.
Arany Z (2008). PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr Opin Genet Dev 18: 426-434.
Atchley WR, Fitch WM (1997). A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci U S A 94: 5172-5176.
Azmi S, Sun H, Ozog A, Taneja R (2003). mSharp-1/DEC2, a basic helix-loop-helix protein functions as a transcriptional repressor of E box activity and Stra13 expression. J Biol Chem 278: 20098-20109.
Azmi S, Ozog A, Taneja R (2004). Sharp-1/DEC2 inhibits skeletal muscle differentiation through repression of myogenic transcription factors. J Biol Chem 279: 52643-52652.
Balaban RS, Nemoto S, Finkel T (2005). Mitochondria, oxidants, and aging. Cell 120: 483-495.
Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A et al (2000). Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151: 1221-1234.
Bejma J, Ji LL (1999). Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87: 465-470.
Benezra R, Davis RL, Lassar A, Tapscott S, Thayer M, Lockshon D et al (1990a). Id: a negative regulator of helix-loop-helix DNA binding proteins. Control of terminal myogenic differentiation. Ann N Y Acad Sci 599: 1-11.
Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H (1990b). The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61: 49-59.
Bergstrom DA, Penn BH, Strand A, Perry RL, Rudnicki MA, Tapscott SJ (2002a). Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol Cell 9: 587-600.
Bergstrom DA, Penn BH, Strand A, Perry RLS, Rudnicki MA, Tapscott SJ (2002b). Promoter-Specific Regulation of MyoD Binding and Signal Transduction Cooperate to Pattern Gene Expression 9: 587-600.
Berkes CA, Tapscott SJ (2005). MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16: 585-595.
Bhawal UK, Sato F, Arakawa Y, Fujimoto K, Kawamoto T, Tanimoto K et al (2011). Basic helix-loop-helix transcription factor DEC1 negatively regulates cyclin D1. J Pathol 224: 420-429.
Black BL, Molkentin JD, Olson EN (1998). Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2. Mol Cell Biol 18: 69-77.
Boggon TJ, Murray J, Chappuis-Flament S, Wong E, Gumbiner BM, Shapiro L (2002). C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296: 1308-1313.
Boudjelal M, Taneja R, Matsubara S, Bouillet P, Dolle P, Chambon P (1997). Overexpression of Stra13, a novel retinoic acid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P19 cells. Genes Dev 11: 2052-2065.
Braun T, Rudnicki MA, Arnold H-H, Jaenisch R (1992). Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71: 369-382.
Brennan TJ, Chakraborty T, Olson EN (1991). Mutagenesis of the myogenin basic region identifies an ancient protein motif critical for activation of myogenesis. Proc Natl Acad Sci U S A 88: 5675-5679.
Buckingham M (2001a). Skeletal muscle formation in vertebrates. Curr Opin Genet Dev 11: 440-448.
Buckingham M (2001b). Skeletal muscle formation in vertebrates. Current Opinion in Genetics & Development 11: 440-448.
Butz S, Kemler R (1994). Distinct cadherin--catenin complexes in Ca2+ dependent cell--cell adhesion. FEBS Letters 355: 195-200.
Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V (2004). The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 18: 2627-2638.
Carnac G, Primig M, Kitzmann M, Chafey P, Tuil D, Lamb N et al (1998). RhoA GTPase and Serum Response Factor Control Selectively the Expression of MyoD without Affecting Myf5 in Mouse Myoblasts. Mol Biol Cell 9: 1891-1902.
Cavallaro U, Dejana E (2011). Adhesion molecule signalling: not always a sticky business. Nat Rev Mol Cell Biol 12: 189-197.
Chang JH, Lin KH, Shih CH, Chang YJ, Chi HC, Chen SL (2006). Myogenic basic helix-loop-helix proteins regulate the expression of peroxisomal proliferator activated receptor-gamma coactivator-1alpha. Endocrinology 147: 3093-3106.
Charge SB, Rudnicki MA (2004). Cellular and molecular regulation of muscle regeneration. Physiol Rev 84: 209-238.
Charrasse S, Meriane M, Comunale F, Blangy A, Gauthier-Rouviere C (2002). N-cadherin-dependent cell-cell contact regulates Rho GTPases and {beta}-catenin localization in mouse C2C12 myoblasts. J Cell Biol 158: 953-965.
Charrasse S, Comunale F, Grumbach Y, Poulat F, Blangy A, Gauthier-Rouviere C (2006). RhoA GTPase regulates M-cadherin activity and myoblast fusion. Mol Biol Cell 17: 749-759.
Charrasse S, Comunale F, Fortier M, Portales-Casamar E, Debant A, Gauthier-Rouviere C (2007). M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion. Mol Biol Cell 18: 1734-1743.
Chen JC, Goldhamer DJ (2003). Skeletal muscle stem cells. Reprod Biol Endocrinol 1: 101.
Chen SL, Dowhan DH, Hosking BM, Muscat GE (2000). The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev 14: 1209-1228.
Chen SL, Loffler KA, Chen D, Stallcup MR, Muscat GE (2002). The coactivator-associated arginine methyltransferase is necessary for muscle differentiation: CARM1 coactivates myocyte enhancer factor-2. J Biol Chem 277: 4324-4333.
Cho Y, Noshiro M, Choi M, Morita K, Kawamoto T, Fujimoto K et al (2009). The basic helix-loop-helix proteins differentiated embryo chondrocyte (DEC) 1 and DEC2 function as corepressors of retinoid X receptors. Mol Pharmacol 76: 1360-1369.
Choi SM, Cho HJ, Cho H, Kim KH, Kim JB, Park H (2008). Stra13/DEC1 and DEC2 inhibit sterol regulatory element binding protein-1c in a hypoxia-inducible factor-dependent mechanism. Nucleic Acids Res 36: 6372-6385.
Conboy IM, Rando TA (2002). The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3: 397-409.
Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003). Notch-mediated restoration of regenerative potential to aged muscle. Science 302: 1575-1577.
Cornelison DD, Wold BJ (1997). Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191: 270-283.
Davis RL, Weintraub H, Lassar AB (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts 51: 987-1000.
Dhar M, Taneja R (2001). Cross-regulatory interaction between Stra13 and USF results in functional antagonism. Oncogene 20: 4750-4756.
Dieter Link DW, Ulrike Kaufmann, Janos Palinkas, Claudia, Heuser MKaAS-P (1998). Intercellular Adhesion in Developing and Adult Skeletal Muscle: Analysis of M-Cadherin. Basic Appl Myol 8 (4): 315-323.
Doberstein SK, Fetter RD, Mehta AY, Goodman CS (1997). Genetic Analysis of Myoblast Fusion: blown fuse Is Required for Progression Beyond the Prefusion Complex. J Cell Biol 136: 1249-1261.
Donalies M, Cramer M, Ringwald M, Starzinski-Powitz A (1991). Expression of M-cadherin, a member of the cadherin multigene family, correlates with differentiation of skeletal muscle cells. Proc Natl Acad Sci U S A 88: 8024-8028.
Duband JL, Dufour S, Hatta K, Takeichi M, Edelman GM, Thiery JP (1987). Adhesion molecules during somitogenesis in the avian embryo. J Cell Biol 104: 1361-1374.
Duband JL, Volberg T, Sabanay I, Thiery JP, Geiger B (1988). Spatial and temporal distribution of the adherens-junction-associated adhesion molecule A-CAM during avian embryogenesis. Development 103: 325-344.
Dubois L, Vincent A (2001). The COE--Collier/Olf1/EBF--transcription factors: structural conservation and diversity of developmental functions. Mech Dev 108: 3-12.
Ellenberger T, Fass D, Arnaud M, Harrison SC (1994). Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev 8: 970-980.
Fisher A, Caudy M (1998). The function of hairy-related bHLH repressor proteins in cell fate decisions. Bioessays 20: 298-306.
Fisher AL, Ohsako S, Caudy M (1996). The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain. Mol Cell Biol 16: 2670-2677.
Forcales SV, Puri PL (2005). Signaling to the chromatin during skeletal myogenesis: novel targets for pharmacological modulation of gene expression. Semin Cell Dev Biol 16: 596-611.
Fredette BJ, Ranscht B (1994). T-cadherin expression delineates specific regions of the developing motor axon-hindlimb projection pathway. J Neurosci 14: 7331-7346.
French BA, Chow KL, Olson EN, Schwartz RJ (1991). Heterodimers of myogenic helix-loop-helix regulatory factors and E12 bind a complex element governing myogenic induction of the avian cardiac alpha-actin promoter. Mol Cell Biol 11: 2439-2450.
Fujimoto K, Shen M, Noshiro M, Matsubara K, Shingu S, Honda K et al (2001). Molecular cloning and characterization of DEC2, a new member of basic helix-loop-helix proteins. Biochem Biophys Res Commun 280: 164-171.
Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007). HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129: 111-122.
Gauthier-Rouviere C, Vandromme M, Tuil D, Lautredou N, Morris M, Soulez M et al (1996). Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts. Mol Biol Cell 7: 719-729.
Gavard J, Marthiens V, Monnet C, Lambert M, Mege RM (2004). N-cadherin activation substitutes for the cell contact control in cell cycle arrest and myogenic differentiation: involvement of p120 and beta-catenin. J Biol Chem 279: 36795-36802.
Geiger B, Salomon D, Takeichi M, Hynes RO (1992). A chimeric N-cadherin/beta 1-integrin receptor which localizes to both cell-cell and cell-matrix adhesions. J Cell Sci 103 ( Pt 4): 943-951.
George-Weinstein M, Gerhart J, Blitz J, Simak E, Knudsen KA (1997). N-cadherin Promotes the Commitment and Differentiation of Skeletal Muscle Precursor Cells. Developmental Biology 185: 14-24.
Giatromanolaki A, Koukourakis MI, Sivridis E, Turley H, Wykoff CC, Gatter KC et al (2003). DEC1 (STRA13) protein expression relates to hypoxia- inducible factor 1-alpha and carbonic anhydrase-9 overexpression in non-small cell lung cancer. J Pathol 200: 222-228.
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S et al (2004). Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493-521.
Goichberg P, Shtutman M, Ben-Ze'ev A, Geiger B (2001). Recruitment of (&bgr;)-catenin to cadherin-mediated intercellular adhesions is involved in myogenic induction. J Cell Sci 114: 1309-1319.
Grechez-Cassiau A, Panda S, Lacoche S, Teboul M, Azmi S, Laudet V et al (2004). The transcriptional repressor STRA13 regulates a subset of peripheral circadian outputs. J Biol Chem 279: 1141-1150.
Gregoire S, Yang XJ (2005). Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol Cell Biol 25: 2273-2287.
Gregoire S, Xiao L, Nie J, Zhang X, Xu M, Li J et al (2007). Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol 27: 1280-1295.
Guasconi V, Puri PL (2009). Chromatin: the interface between extrinsic cues and the epigenetic regulation of muscle regeneration. Trends Cell Biol 19: 286-294.
Hamaguchi H, Fujimoto K, Kawamoto T, Noshiro M, Maemura K, Takeda N et al (2004). Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system. Biochem J 382: 43-50.
Hamamori Y, Wu HY, Sartorelli V, Kedes L (1997). The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Mol Cell Biol 17: 6563-6573.
Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN et al (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364: 501-506.
Hatta K, Takeichi M (1986). Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320: 447-449.
Hazan RB, Kang L, Whooley BP, Borgen PI (1997). N-cadherin promotes adhesion between invasive breast cancer cells and the stroma. Cell Adhes Commun 4: 399-411.
Heidt AB, Rojas A, Harris IS, Black BL (2007). Determinants of myogenic specificity within MyoD are required for noncanonical E box binding. Mol Cell Biol 27: 5910-5920.
Hollnagel A, Grund C, Franke WW, Arnold HH (2002). The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration. Mol Cell Biol 22: 4760-4770.
Hong Y, Xing X, Li S, Bi H, Yang C, Zhao F et al (2011). SUMOylation of DEC1 Protein Regulates Its Transcriptional Activity and Enhances Its Stability. PLoS One 6: e23046.
Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M et al (2002). Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419: 841-844.
Hsiao SP, Huang KM, Chang HY, Chen SL (2009). P/CAF rescues the Bhlhe40-mediated repression of MyoD transactivation. Biochem J 422: 343-352.
Hsiao SP, Chen SL (2010). Myogenic regulatory factors regulate M-cadherin expression by targeting its proximal promoter elements. Biochem J 428: 223-233.
Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI (2001). The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem 276: 12301-12309.
Huber AH, Weis WI (2001). The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105: 391-402.
Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA (1993). Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118: 1137-1147.
Hutton JC, Christofori G, Chi WY, Edman U, Guest PC, Hanahan D et al (1993). Molecular cloning of mouse pancreatic islet R-cadherin: differential expression in endocrine and exocrine tissue. Mol Endocrinol 7: 1151-1160.
Inuzuka H, Redies C, Takeichi M (1991). Differential expression of R- and N-cadherin in neural and mesodermal tissues during early chicken development. Development 113: 959-967.
Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A (1994). Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 199: 326-337.
Ishibashi J, Perry RL, Asakura A, Rudnicki MA (2005a). MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. J Cell Biol 171: 471-482.
Ishibashi J, Perry RL, Asakura A, Rudnicki MA (2005b). MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. J Cell Biol 171: 471-482.
Ishido M, Uda M, Masuhara M, Kami K (2006). Alterations of M-cadherin, neural cell adhesion molecule and beta-catenin expression in satellite cells during overload-induced skeletal muscle hypertrophy. Acta Physiol (Oxf) 187: 407-418.
Ivanov SV, Salnikow K, Ivanova AV, Bai L, Lerman MI (2007). Hypoxic repression of STAT1 and its downstream genes by a pVHL/HIF-1 target DEC1/STRA13. Oncogene 26: 802-812.
Ivanova AV, Ivanov SV, Danilkovitch-Miagkova A, Lerman MI (2001). Regulation of STRA13 by the von Hippel-Lindau tumor suppressor protein, hypoxia, and the UBC9/ubiquitin proteasome degradation pathway. J Biol Chem 276: 15306-15315.
Ivanova AV, Ivanov SV, Zhang X, Ivanov VN, Timofeeva OA, Lerman MI (2004). STRA13 interacts with STAT3 and modulates transcription of STAT3-dependent targets. J Mol Biol 340: 641-653.
Ivanova AV, Ivanov SV, Lerman ML (2005). Association, mutual stabilization, and transcriptional activity of the STRA13 and MSP58 proteins. Cell Mol Life Sci 62: 471-484.
J L Bixby RSP, J Lilien, and L F Reichardt (1987). Neurite outgrowth on muscle cell surfaces involves extracellular matrix receptors as well as Ca2+-dependent and -independent cell adhesion molecules. Proc Natl Acad Sci U S A 84(8): 2555–2559.
Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE et al (2011). Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30: 249-262.
Johnson JE, Wold BJ, Hauschka SD (1989). Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol Cell Biol 9: 3393-3399.
Jones S (2004). An overview of the basic helix-loop-helix proteins. Genome Biol 5: 226.
Kadi F, Thornell LE (2000). Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem Cell Biol 113: 99-103.
Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V et al (2004). Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431: 466-471.
Kaufmann U, Kirsch J, Irintchev A, Wernig A, Starzinski-Powitz A (1999a). The M-cadherin catenin complex interacts with microtubules in skeletal muscle cells: implications for the fusion of myoblasts. J Cell Sci 112 ( Pt 1): 55-68.
Kaufmann U, Martin B, Link D, Witt K, Zeitler R, Reinhard S et al (1999b). M-cadherin and its sisters in development of striated muscle. Cell Tissue Res 296: 191-198.
Kaupmann K, Becker-Follmann J, Scherer G, Jockusch H, Starzinski-Powitz A (1992). The gene for the cell adhesion molecule M-cadherin maps to mouse chromosome 8 and human chromosome 16q24.1-qter and is near the E-cadherin (uvomorulin) locus in both species. Genomics 14: 488-490.
Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3: 177-185.
Kimura Y, Matsunami H, Inoue T, Shimamura K, Uchida N, Ueno T et al (1995). Cadherin-11 expressed in association with mesenchymal morphogenesis in the head, somite, and limb bud of early mouse embryos. Dev Biol 169: 347-358.
Knudsen KA (1990). Cell adhesion molecules in myogenesis. Current Opinion in Cell Biology 2: 902-906.
Kuch C, Winnekendonk D, Butz S, Unvericht U, Kemler R, Starzinski-Powitz A (1997). M-cadherin-mediated cell adhesion and complex formation with the catenins in myogenic mouse cells. Exp Cell Res 232: 331-338.
Kunne AG, Meierhans D, Allemann RK (1996). Basic helix-loop-helix protein MyoD displays modest DNA binding specificity. FEBS Lett 391: 79-83.
Lecomte V, Meugnier E, Euthine V, Durand C, Freyssenet D, Nemoz G et al (2010). A new role for sterol regulatory element binding protein 1 transcription factors in the regulation of muscle mass and muscle cell differentiation. Mol Cell Biol 30: 1182-1198.
Lemercier C, To RQ, Carrasco RA, Konieczny SF (1998). The basic helix-loop-helix transcription factor Mist1 functions as a transcriptional repressor of myoD. EMBO J 17: 1412-1422.
Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S et al (2005). PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3: e101.
Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006). SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34: D257-260.
Li Y, Zhang H, Xie M, Hu M, Ge S, Yang D et al (2002). Abundant expression of Dec1/stra13/sharp2 in colon carcinoma: its antagonizing role in serum deprivation-induced apoptosis and selective inhibition of procaspase activation. Biochem J 367: 413-422.
Li Y, Xie M, Song X, Gragen S, Sachdeva K, Wan Y et al (2003). DEC1 negatively regulates the expression of DEC2 through binding to the E-box in the proximal promoter. J Biol Chem 278: 16899-16907.
Li Y, Song X, Ma Y, Liu J, Yang D, Yan B (2004). DNA binding, but not interaction with Bmal1, is responsible for DEC1-mediated transcription regulation of the circadian gene mPer1. Biochem J 382: 895-904.
Li Y, Xie M, Yang J, Yang D, Deng R, Wan Y et al (2006). The expression of antiapoptotic protein survivin is transcriptionally upregulated by DEC1 primarily through multiple sp1 binding sites in the proximal promoter. Oncogene 25: 3296-3306.
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O et al (2002). Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418: 797-801.
Linask KK, Ludwig C, Han MD, Liu X, Radice GL, Knudsen KA (1998). N-cadherin/catenin-mediated morphoregulation of somite formation. Dev Biol 202: 85-102.
Ludolph DC, Konieczny SF (1995). Transcription factor families: muscling in on the myogenic program. FASEB J 9: 1595-1604.
Ma K, Chan JK, Zhu G, Wu Z (2005). Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol Cell Biol 25: 3575-3582.
Mahoney DJ, Parise G, Melov S, Safdar A, Tarnopolsky MA (2005). Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 19: 1498-1500.
Mal A, Sturniolo M, Schiltz RL, Ghosh MK, Harter ML (2001). A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J 20: 1739-1753.
Malika B-B, Padilla F, Marc N, Carmen C-D, Dominique F, Mege RM (1997). Localized deposition of M-cadherin in the glomeruli of the granular layer during the postnatal development of mouse cerebellum. The Journal of Comparative Neurology 378: 180-195.
Massari ME, Murre C (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20: 429-440.
Mauro A (1961). Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9: 493-495.
McKinsey TA, Zhang CL, Olson EN (2002). Signaling chromatin to make muscle. Curr Opin Cell Biol 14: 763-772.
Mege RM, Goudou D, Diaz C, Nicolet M, Garcia L, Geraud G et al (1992). N-cadherin and N-CAM in myoblast fusion: compared localisation and effect of blockade by peptides and antibodies. J Cell Sci 103 ( Pt 4): 897-906.
Meriane M, Roux P, Primig M, Fort P, Gauthier-Rouviere C (2000). Critical Activities of Rac1 and Cdc42Hs in Skeletal Myogenesis: Antagonistic Effects of JNK and p38 Pathways. Mol Biol Cell 11: 2513-2528.
Miyazaki K, Kawamoto T, Tanimoto K, Nishiyama M, Honda H, Kato Y (2002). Identification of functional hypoxia response elements in the promoter region of the DEC1 and DEC2 genes. J Biol Chem 277: 47014-47021.
Molkentin JD, Black BL, Martin JF, Olson EN (1995). Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83: 1125-1136.
Murre C, McCaw PS, Baltimore D (1989). A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56: 777-783.
Myer A, Olson EN, Klein WH (2001). MyoD Cannot Compensate for the Absence of Myogenin during Skeletal Muscle Differentiation in Murine Embryonic Stem Cells. Developmental Biology 229: 340-350.
Nabeshima Y, Hanaoka K, Hayasaka M, Esuml E, Li S, Nonaka I et al (1993). Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364: 532-535.
Nagel AC, Maier D, Krauss S, Mezger M, Preiss A (2004). Neurogenic phenotypes induced by RNA interference with bHLH genes of the Enhancer of split complex of Drosophila melanogaster. Genesis 39: 105-114.
Nagy Z, Tora L (2007). Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26: 5341-5357.
Nakamura H, Tanimoto K, Hiyama K, Yunokawa M, Kawamoto T, Kato Y et al (2008). Human mismatch repair gene, MLH1, is transcriptionally repressed by the hypoxia-inducible transcription factors, DEC1 and DEC2. Oncogene 27: 4200-4209.
Nollet F, Kools P, van Roy F (2000). Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299: 551-572.
Nose A, Tsuji K, Takeichi M (1990). Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61: 147-155.
O'Hagan KA, Cocchiglia S, Zhdanov AV, Tambuwala MM, Cummins EP, Monfared M et al (2009). PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci U S A 106: 2188-2193.
Olaf Rose JgRSRMBMCMRAWAS-P (1994). Expression of M-cadherin protein in myogenic cells during prenatal mouse development and differentiation of embryonic stem cells in culture. Developmental Dynamics 201: 245-259.
Olson EN, Klein WH (1994). bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev 8: 1-8.
Palancade B, Doye V (2008). Sumoylating and desumoylating enzymes at nuclear pores: underpinning their unexpected duties? Trends Cell Biol 18: 174-183.
Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3: 187-197.
Paroush Z, Finley RL, Jr., Kidd T, Wainwright SM, Ingham PW, Brent R et al (1994). Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 79: 805-815.
Partch CL, Gardner KH (2010). Coactivator recruitment: A new role for PAS domains in transcriptional regulation by the bHLH-PAS family. Journal of Cellular Physiology 223: 553-557.
Patel SD, Chen CP, Bahna F, Honig B, Shapiro L (2003). Cadherin-mediated cell-cell adhesion: sticking together as a family. Curr Opin Struct Biol 13: 690-698.
Pilegaard H, Saltin B, Neufer PD (2003). Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546: 851-858.
Pishvaian MJ, Feltes CM, Thompson P, Bussemakers MJ, Schalken JA, Byers SW (1999). Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res 59: 947-952.
Pokutta S, Weis WI (2007). Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu Rev Cell Dev Biol 23: 237-261.
Polesskaya A, Naguibneva I, Fritsch L, Duquet A, Ait-Si-Ali S, Robin P et al (2001). CBP/p300 and muscle differentiation: no HAT, no muscle. EMBO J 20: 6816-6825.
Puigserver P (2005). Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha. Int J Obes (Lond) 29 Suppl 1: S5-9.
Puri PL, Avantaggiati ML, Balsano C, Sang N, Graessmann A, Giordano A et al (1997a). p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J 16: 369-383.
Puri PL, Sartorelli V, Yang XJ, Hamamori Y, Ogryzko VV, Howard BH et al (1997b). Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell 1: 35-45.
Puri PL, Iezzi S, Stiegler P, Chen TT, Schiltz RL, Muscat GE et al (2001). Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol Cell 8: 885-897.
Qian Y, Jung YS, Chen X (2011). DeltaNp63, a target of DEC1 and histone deacetylase 2, modulates the efficacy of histone deacetylase inhibitors in growth suppression and keratinocyte differentiation. J Biol Chem 286: 12033-12041.
Reid RA, Hempertly J (1990). Human N-cadherin: nucleotide and deduced amino acid sequence. Nucl Acids Res 18: 5896-.
Rimm DL, Sinard JH, Morrow JS (1995). Reduced alpha-catenin and E-cadherin expression in breast cancer. Lab Invest 72: 506-512.
Rose O, Rohwedel J, Reinhardt S, Bachmann M, Cramer M, Rotter M et al (1994). Expression of M-cadherin protein in myogenic cells during prenatal mouse development and differentiation of embryonic stem cells in culture. Dev Dyn 201: 245-259.
Rossner MJ, Dorr J, Gass P, Schwab MH, Nave KA (1997). SHARPs: mammalian enhancer-of-split- and hairy-related proteins coupled to neuronal stimulation. Mol Cell Neurosci 10: 460-475.
Rudnicki MA, Braun T, Hinuma S, Jaenisch R (1992). Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71: 383-390.
Rudnicki MA, Schnegelsberg PNJ, Stead RH, Braun T, Arnold H-H, Jaenisch R (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75: 1351-1359.
Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA (1999). Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol 144: 631-643.
Sabourin LA, Tamai K, Seale P, Wagner J, Rudnicki MA (2000). Caspase 3 cleavage of the Ste20-related kinase SLK releases and activates an apoptosis-inducing kinase domain and an actin-disassembling region. Mol Cell Biol 20: 684-696.
Sabourin PJ, Kingma YJ, Bowes KL (1991). An active feedback system for isotonic studies of smooth muscle. IEEE Trans Biomed Eng 38: 614-616.
Sajko S, Kubinova L, Cvetko E, Kreft M, Wernig A, Erzen I (2004). Frequency of M-cadherin-stained satellite cells declines in human muscles during aging. J Histochem Cytochem 52: 179-185.
Sartorelli V, Huang J, Hamamori Y, Kedes L (1997). Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol 17: 1010-1026.
Sartorelli V, Puri PL, Hamamori Y, Ogryzko V, Chung G, Nakatani Y et al (1999). Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol Cell 4: 725-734.
Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000). Pax7 is required for the specification of myogenic satellite cells. Cell 102: 777-786.
Seghatoleslami MR, Myers L, Knudsen KA (2000). Upregulation of myogenin by N-cadherin adhesion in three-dimensional cultures of skeletal myogenic BHK cells. J Cell Biochem 77: 252-264.
Shapiro L, Weis WI (2009). Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol 1: a003053.
Shen M, Kawamoto T, Yan W, Nakamasu K, Tamagami M, Koyano Y et al (1997). Molecular characterization of the novel basic helix-loop-helix protein DEC1 expressed in differentiated human embryo chondrocytes. Biochem Biophys Res Commun 236: 294-298.
Shimoyama Y, Shibata T, Kitajima M, Hirohashi S (1998). Molecular Cloning and Characterization of a Novel Human Classic Cadherin Homologous with Mouse Muscle Cadherin. J Biol Chem 273: 10011-10018.
Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P, Coornaert D et al (2007). Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol Biol 7: 33.
St-Pierre B, Flock G, Zacksenhaus E, Egan SE (2002). Stra13 homodimers repress transcription through class B E-box elements. J Biol Chem 277: 46544-46551.
St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S et al (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127: 397-408.
Sterner DE, Berger SL (2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64: 435-459.
Sun H, Taneja R (2000). Stra13 expression is associated with growth arrest and represses transcription through histone deacetylase (HDAC)-dependent and HDAC-independent mechanisms. Proc Natl Acad Sci U S A 97: 4058-4063.
Sun H, Li L, Vercherat C, Gulbagci NT, Acharjee S, Li J et al (2007a). Stra13 regulates satellite cell activation by antagonizing Notch signaling. J Cell Biol 177: 647-657.
Sun H, Li L, Vercherat C, Gulbagci NT, Acharjee S, Li J et al (2007b). Stra13 regulates satellite cell activation by antagonizing Notch signaling. J Cell Biol 177: 647-657.
Tajbakhsh S, Buckingham M (2000). The birth of muscle progenitor cells in the mouse: spatiotemporal considerations. Curr Top Dev Biol 48: 225-268.
Takeichi KHM (1986). Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320: 447 - 449.
Takeichi M (1988). The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102: 639-655.
Taylor MV (2002). Muscle Differentiation: How Two Cells Become One. Current Biology 12: R224-R228.
Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I (2002). Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296: 350-354.
Teramoto M, Nakamasu K, Noshiro M, Matsuda Y, Gotoh O, Shen M et al (2001). Gene structure and chromosomal location of a human bHLH transcriptional factor DEC1 x Stra13 x SHARP-2/BHLHB2. J Biochem 129: 391-396.
Teyssier C, Chen D, Stallcup MR (2002). Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function. J Biol Chem 277: 46066-46072.
Thin TH, Li L, Chung TK, Sun H, Taneja R (2007). Stra13 is induced by genotoxic stress and regulates ionizing-radiation-induced apoptosis. EMBO Rep 8: 401-407.
Turley H, Wykoff CC, Troup S, Watson PH, Gatter KC, Harris AL (2004). The hypoxia-regulated transcription factor DEC1 (Stra13, SHARP-2) and its expression in human tissues and tumours. J Pathol 203: 808-813.
Turner BM (1998). Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell Mol Life Sci 54: 21-31.
Veera MS, William HK (2001). Similar myogenic functions for myogenin and MRF4 but not MyoD in differentiated murine embryonic stem cells. genesis 30: 239-249.
Vercherat C, Chung TK, Yalcin S, Gulbagci N, Gopinadhan S, Ghaffari S et al (2009). Stra13 regulates oxidative stress mediated skeletal muscle degeneration. Hum Mol Genet 18: 4304-4316.
Wakelam MJ (1985 ). The fusion of myoblasts. Biochem J v.228(1).
Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W et al (2009). Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138: 1019-1031.
Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB et al (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proceedings of the National Academy of Sciences of the United States of America 86: 5434-5438.
Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R et al (1991a). The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251: 761-766.
Weintraub H, Dwarki VJ, Verma I, Davis R, Hollenberg S, Snider L et al (1991b). Muscle-specific transcriptional activation by MyoD. Genes Dev 5: 1377-1386.
Weintraub H, Genetta T, Kadesch T (1994). Tissue-specific gene activation by MyoD: determination of specificity by cis-acting repression elements. Genes Dev 8: 2203-2211.
Wrobel E, Brzoska E, Moraczewski J (2007). M-cadherin and beta-catenin participate in differentiation of rat satellite cells. Eur J Cell Biol 86: 99-109.
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V et al (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115-124.
Wu Z, Woodring PJ, Bhakta KS, Tamura K, Wen F, Feramisco JR et al (2000). p38 and Extracellular Signal-Regulated Kinases Regulate the Myogenic Program at Multiple Steps. Mol Cell Biol 20: 3951-3964.
Xenaki G, Ontikatze T, Rajendran R, Stratford IJ, Dive C, Krstic-Demonacos M et al (2008). PCAF is an HIF-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. Oncogene 27: 5785-5796.
Yagi T, Takeichi M (2000). Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes & Development 14: 1169-1180.
Yamada S, Nomoto S, Fujii T, Takeda S, Kanazumi N, Sugimoto H et al (2007). Frequent promoter methylation of M-cadherin in hepatocellular carcinoma is associated with poor prognosis. Anticancer Res 27: 2269-2274.
Yang Z, MacQuarrie KL, Analau E, Tyler AE, Dilworth FJ, Cao Y et al (2009). MyoD and E-protein heterodimers switch rhabdomyosarcoma cells from an arrested myoblast phase to a differentiated state. Genes Dev 23: 694-707.
Yao J, Wang L, Chen L, Zhang S, Zhao Q, Jia W et al (2006). Cloning and developmental expression of the DEC1 ortholog gene in zebrafish. Gene Expr Patterns 6: 919-927.
Yun Z, Maecker HL, Johnson RS, Giaccia AJ (2002). Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2: 331-341.
Zawel L, Yu J, Torrance CJ, Markowitz S, Kinzler KW, Vogelstein B et al (2002). DEC1 is a downstream target of TGF-beta with sequence-specific transcriptional repressor activities. Proc Natl Acad Sci U S A 99: 2848-2853.
Zelzer E, Wappner P, Shilo BZ (1997). The PAS domain confers target gene specificity of Drosophila bHLH/PAS proteins. Genes Dev 11: 2079-2089.
Zeschnigk M, Kozian D, Kuch C, Schmoll M, Starzinski-Powitz A (1995). Involvement of M-cadherin in terminal differentiation of skeletal muscle cells. J Cell Sci 108 ( Pt 9): 2973-2981.
Zhang Y, Sivasankar S, Nelson WJ, Chu S (2009). Resolving cadherin interactions and binding cooperativity at the single-molecule level. Proc Natl Acad Sci U S A 106: 109-114.
Zhu L, Wang Q, Zhang L, Fang Z, Zhao F, Lv Z et al (2010). Hypoxia induces PGC-1alpha expression and mitochondrial biogenesis in the myocardium of TOF patients. Cell Res 20: 676-687.
指導教授 陳盛良、劉淦光
(Shen-Liang Chen、Gan-Guang Liou)
審核日期 2011-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明