博碩士論文 982203060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:151 、訪客IP:3.128.199.210
姓名 陳彥呈(Yan-cheng Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以NCLA9K4活性碳作為VOC濃縮介質與熱脫附方法之改良
(Activated charcoal NCLA9K4 as VOC condensed medium and improvment of thermal desorption method)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 揮發性有機化合物(volatile organic compound, VOC),本身為空氣中之汙染物,也是臭氧以及二級有機氣溶膠之前驅物。臭氧、VOC以及有機氣溶膠濃度的上升會造成人們健康的危害。因此對於大氣中VOC的組成有事先的瞭解,將有助於掌握臭氧的形成機構。然而在全範圍的VOC分析中,對於高揮發性的物種量測在現今的技術中仍具相當挑戰。
本次研究中運用一多孔洞新材料活性碳NCLA9K4搭配自製不須冷劑補給之熱脫附裝置,將對大氣中之VOC具好的吸附能力且定量良好。值得注意的是VOC中含豐富的乙烷、乙烯、丙烷、丙烯等皆是容易破出之物質。NCLA9K4具微孔的特質(孔徑範圍在0.5 nm ~ 30 nm,平均孔徑1.85 nm)且高比表面積(~3500m2g-1)具良好的VOC吸附特性,並與孔徑材料MCM-48與商品化多重床碳吸附劑進行吸附比較。
透過皮爾特晶片的降溫,先將捕捉管之吸附溫度降至-10以及-30℃進行測試,最後針對皮爾特晶片之散熱部分,改用更高效能散熱模組,而能將溫度降至-40℃,利用降溫的輔助提高材料在高揮發性物種的捕捉。
利用A9K4搭配Carbosieve SIII所組合之二重床,發現在-40℃下能將C2以及C3物種捕捉效果良好,線性達0.999以上,C2~C11的RSD皆小於3%,偵測極限都在數百個pptv以下。
摘要(英) Ambient volatile organic compounds (VOCs) are air pollutants, and also act as precursors of ozone and secondary organic aerosol (SOA). Elevated VOCs, ozone, and fine aerosol levels cause adverse effects on human health.
Knowing the composition of ambient VOCs is the prerequisite of understanding ozone formation and thus its containment strategy. However, the full-range analysis of ambient VOCs in the field is technically challenging, particularly for the more volatile compounds. In this study, a new porous material - activated charcoal NCLA9K4 - will be studied to quantitative enrich ambient level VOCs by a self-built cryogen-free thermal desorption device.
Special attention is given to the enrichment efficiency of the most volatile compounds, namely ethane, ethylene, propane, and propylene, since they are more easily to breakthrough. NCLA9K4, which has micropores (pore range = 0.5 nm ~ 30 nm, average pore size = 1.8 nm) and high specific surface area (3500 m2s-1), was compared with MCM-48 and commercial multi-carbon sorbents for their VOC enrichment capability.
Test of trapping was first performed by cooling the sorbent trap at -10 and -30℃. Further improvement in the Peltier cooling using a better heat-sink allowed a lower temperature of -40℃and; thus, better trapping efficiency for high boiling compounds.
The combination of using A9K4 and Carbosieve III to form a dual-sorbent bed and cooling at -40℃ was able to quantitatively analyze ambient C2-C3 compounds with R2 close to 0.999, RSD better than 3%, and detection limit at sub-ppbv level.
關鍵字(中) ★ 致冷晶片
★ 活性碳
★ 有機揮發性氣體
關鍵字(英) ★ VOC
★ peltier cooler
★ activated charcoal
論文目次 中文摘要.............................................................................................................I
英文摘要............................................................................................................II
謝誌..................................................................................................................IV
目錄..................................................................................................................VI
圖目錄..............................................................................................................IX
表目錄.......................................................................................................... XIII
第一章、前言....................................................................................................1
1-1 VOC之來源.................................................................................................1
1-2 VOC的為害.................................................................................................4
1-3 光化測站與監測網.....................................................................................5
1-4 VOC之分析方法.......................................................................................10
1-5 前濃縮方法...............................................................................................13
第二章、文獻回顧............................................................................................19
2-1 活性碳吸附劑...........................................................................................20
2-2 石墨碳黑吸附劑.......................................................................................21
2-3 多孔聚合物吸附劑...................................................................................22
2-4 碳分子篩吸附劑.......................................................................................23
2-5 中孔洞矽分子篩.......................................................................................24
2-6 活性碳NCLA9K4.....................................................................................30
2-6-1 水熱碳化法............................................................................................30
2-6-2 合成配方................................................................................................32
2-6-3 表面形貌觀察........................................................................................34
2-7 實驗動機...................................................................................................36
第三章、實驗原理及分析方法......................................................................37
3-1 前濃縮儀裝置...........................................................................................37
3-1-1 捕捉管改良與製作................................................................................38
3-1-2 致冷裝置設計........................................................................................40
3-1-3 致冷裝置改良........................................................................................43
3-1-4 致冷裝置再改良....................................................................................45
3-1-5 自動化程序控制....................................................................................46
3-2 實驗架構與流程.......................................................................................47
3-3 層析系統架構...........................................................................................51
3-3-1 層析管柱原理........................................................................................51
3-3-2 Heart-cut 原理........................................................................................52
3-4 偵測器.......................................................................................................56
3-5 除水裝置...................................................................................................57
3-6 標準氣體...................................................................................................58
第四章、結果與討論........................................................................................60
4-1 常溫下不同材料間比較...........................................................................60
4-2 負溫捕捉探討...........................................................................................64
4-2-1 A9K4在-10℃捕捉探討.........................................................................64
4-2-2 A9K4在-30℃捕捉探討.........................................................................67
4-2-3 A9K4搭配Carbosieve SIII於-30℃捕捉表現.......................................70
4-2-4 -40℃低溫下材料吸附比較...................................................................72
4-3 儀器偵測極限(LOD)................................................................................80
4-4 結論...........................................................................................................83
第五章、參考資料..........................................................................................84
圖 目 錄
圖1-1 NOx與VOC經光化反應形成O3與HNO3之二次汙染物示意圖.........5
圖1-2 1998年美國光化學評估監測站的分布.................................................6
圖1-3 我國2010年光化學評估監測站分布圖,其中包括兩個移動測站......8
圖1-4 自1999到2009年之全台臭氧月平均圖...............................................8
圖1-5 全球VOC監測網...................................................................................9
圖1-6 大氣中VOC量測方法分類.................................................................12
圖1-7 皮爾特晶片實圖,可依需求使用不同尺寸的晶片.............................17
圖1-8 降溫晶片示意圖...................................................................................17
圖2-1 活性碳表面結構示意圖.......................................................................20
圖2-2 poly(p-2,6-diphenylphenyleneoxide)結構圖.........................................23
圖2-3 矽酸及鋁酸四面體結構.......................................................................26
圖2-4 MCM-41之可能合成機制,(1)形成液晶化,(2)矽酸化.......................26
圖2-5 M41S系列示意圖.................................................................................26
圖2-6在250℃脫附溫度下,MCM-41與碳分子篩多重床
(multi-carbon: Carboxen 1003 + Carboxen 1000 + Carbotrap)之單位
碳感度比較..........................................................................................27
圖2-7 MCM-41與碳分子篩多重床對混合VOC C7-C12脫附溫度圖...........28
圖2-8 不同溫度下MCM-48對於VOC捕捉之層析圖,圖譜分為
PLOT(C2~C6)以及DB-1(C6~C12)呈現,(a)、(c)捕捉溫度30℃;(b)、
(d)捕捉溫度-20℃................................................................................29
圖2-9 (a) 5 μm解析度SEM圖;(b)高效能電子穿透顯微圖,掃描模式2 nm
..............................................................................................................31
圖2-10 推測硬碳球形成機制,A:為兩性結構形成;B:微胞形成;C:
堆疊成核............................................................................................31
圖2-10 (a) 不鏽鋼外罐; (b) 鐵氟龍內罐....................................................32
圖2-11 (a)尺標50 μm,粒子團聚大小1~25 μm; (b)尺標10 μm,單一粒
子大小~200 nm....................................................................................35
圖2-12 水熱產物活化前後SEM圖。(a)活化前的表面形貌;(b)活化後所得活性碳的表面形貌...................................................................................35
圖3-1 濃縮系統關鍵步驟(a)降溫捕捉;(b)高溫脫附...................................38
圖3-2 早期電阻式加熱裝置,捕捉管以不鏽鋼管為主,捕捉管中間焊有感
溫線來偵測捕捉管之溫度..................................................................39
圖3-3 以玻璃管填充之多重床吸附管...........................................................40
圖3-4 (a) Peltier致冷晶片實圖;(b)加熱線圈實圖........................................41
圖3-5致冷裝置示意圖:(a)透視圖(b)側視圖.................................................42
圖3-6致冷裝置示意圖(a)設計圖;(b)、(c)裝置實照圖..................................44
圖3-7 (a)散熱器實圖;(b) 改良之致冷裝置測試圖......................................45
圖3-8 自動化控制程序聯結示意圖...............................................................46
圖3-9 前濃縮系統示意圖,SSR為固態繼電器(solid state relay);P-535為
溫度程序控制器;MFC質量流量控制器(mass flow control)............49
圖3-10 閥件切換狀態(a)預備狀態;(b)樣品捕捉;(c)進樣;(d)管路淨化,
pump為一負壓系統,透過MFC控制進樣的流量;STD表示56
種 VOC 混合氣體............................................................................50
圖3-11 Heart-Cut原理示意圖,DB-1無法分析良好之輕碳部分(C2~C5)切入
(a) PLOT管柱將輕碳分離;(b)重碳分離良好部分切入空管直接帶
出........................................................................................................53
圖3-12 層析系統Deans switch裝置..............................................................54
圖3-13 火焰離子偵測器(FID)結構圖...........................................................56
圖3-14 Nafion dryer示意圖............................................................................57
圖4-1 A9K4空白分析圖譜,(a)PLOT管柱層析圖譜;(b)DB-1管柱層析圖
譜..........................................................................................................62
圖4-2 (a)三合一多重床與(b)A9K4在30℃下對C2~C5的捕捉效果比較.....63
圖4-3 (a)三合一組合多重床與(b)A9K4在30℃下對C6~C12的捕捉效果比
較..........................................................................................................63
圖4-4 (a)三合一與(b)A9K4在-10℃捕捉下,於PLOT管柱之層析效果......65
圖4-5 (a)三合一與(b)A9K4在-10℃捕捉下,於DB-1管柱之層析效果.......66
圖4-6 吸附材料於-10℃捕捉之再現性(N=3)...............................................66
圖4-7 A9K4在-30℃下的層析效果(a)PLOT管柱層析圖;(b)DB-1管柱層
析圖,虛線部分為C2的層析峰............................................................67
圖4-8 A9K4於-30℃捕捉VOC之線性..........................................................68
圖4-9 A9K4 + Carbosieve III於-30℃捕捉之層析圖譜,(a)C2~C6在PLOT
管柱層析圖;(b)C6~C12在DB-1管柱層析圖......................................70
圖4-10多重床吸附劑之線性比較,(a)~(f)為A9K4+Carbosieve SIII;(g)~(l)
為三合一材料....................................................................................72
圖4-11 -40℃低溫下捕捉層析圖,(a)、(b)為C2~C5層析圖;(c)、(d)為C6~C12
層析圖,(a)、(c)為三合一材料;(b)、(d)為A9K4+Carbosieve SIII......74
圖4-12 -40℃下捕捉VOC線性比較,(a)~(m)為A9K4+Carbosieve III;(n)~(z)
為三合一材料......................................................................................77
圖4-13 吸附材料穩定性比較.........................................................................78
圖4-14 不同溫度下材料捕捉穩定性.............................................................78
圖4-15 校正曲線圖,斜率值m表校正靈敏度..............................................79
圖4-16 2010年1月至2011年5月各光化測站所測乙烯濃度值,取當月量
測濃度之最高值................................................................................82
圖4-17 吸附材料與降溫輔助捕捉VOC之整理...........................................84
表 目 錄
表1-1 估計全球VOC的排放(百萬噸/年).......................................................3
表1-2 美國標準方法(TO)與我國標準方法(NIEA)比較..............................15
表1-3 晶片致冷捕捉運用於即時量測之論文回顧.......................................18
表2-1 Tenax結構特性..................................................................................23
表3-1 氣流參數設定,Aux1用於將捕捉之VOC送至DB-1層析管柱;
Aux2用於切割樣品,將C2~C5送至PLOT管柱,C6~C12送至空
管..........................................................................................................55
表3-2 GC運作溫度時序.................................................................................55
表3-3 鋼瓶56種VOC標準氣體....................................................................59
表4-1 材料特性,Carboxen 1000、Carboxen 1003、Carbotrap組合成多重
床..........................................................................................................62
表4-2常溫下不同孔徑材料對於VOC吸附範圍比較...................................64
表4-3 吸附材料特性.......................................................................................69
表4-4 A9K4+Carbosieve SIII於-40℃捕捉下之偵測極限(σ = 3).................80
參考文獻 1. 中華民國行政院環保署, 揮發性有機物空氣汙染管制及排放標準, 民國九十五年五月
2. http://www.epa.gov/
3. Gregory, C. P.; Chun, Y. W.; Don, B.; John, L. A.; Gurumurthy, R.; Thomas H. S.; Maria, M.; Ken, S., Comparing air dispersion model predictions with measured concentrations of VOCs in urban community. Environ. Sci. Technel. 2004, 38, 1949-1959.
4. Wohrnschimmel, H.; Magana, M.; Stahel, W.A.; Blanco,S.; Acuna, S.; Perez, J. M.; Gonzallez, S.; Gutierrez, V.; Wakamatsu, S.; Cardenas, B., Measurements and receptor modeling of volatile organic compounds in Southeastern Mexico City, 2000-2007. Atmos. Chem. Phys. 2010, 10, 9027-9037
5. Sheng-Po, C.; Tsun-Hsien, L.; Tu-Fu, C.; Chang-Feng, O. Y.; Jia-Lin, W. Julius, S. C., Diagnostic modeling of PAMS VOC observation. Environ. Sci. Technol. 2010, 44, 4635-4644.
6. Yassaa, N.;Brancaleoni, E.; Frattoni, M.; Ciccioli, P., Isomeric analysis of BTEXs in the atmosphere using beta-cyclodextrin capillary chromatography coupled with thermal desorption and mass spectrometry. Chemosphere. 2006, 63, 502-508.
7. Tassi, F.; Montegrossi, G.; Vaselli, O.; Morandi, A.; Capecchiacci, F.; Nisi, B., Flux measurements of benzene and toluene form landfill cover soils. Waste Management & Research 2011, 29, 50-58.
8. Paul, J. G.; Meinrat, O. A., Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 1990, 250,1669-1678.
9. Mukhopadhyay, R., Don’t waste your breath. Anal. Chem. 2004, 76, 273A-276A.
10. Seinfeld, J. H.; Pandis, S. N., Atmospheric chemistry and physics. John Wiley & Sons, Inc.: 1998.
11. Sawyer, R. F.; Harley, R. A.; Cadle, S. H.; Norbeck, J. M.; Slott, R.; Bravo, H.A., Mobile sources critical review: 1998 NARSTO assessment. Atmos. Environ. 2000, 34, 2161-2181.
12. Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; Mckay, W. A.; Pierce, T.; Scholes, B.; Steinbrecher, R.; Tallamraju, R.; Taylor, J.; Zimmerman, P., A global model of natural volatile organic compound emissions. J. Geophys. Res. 1995, 100, 8873-8892.
13. Intergovernmental Panel on Climate Change, IPCC, Third assessment report- climate change 2001- complete online versions, 2003.
14. http://www.epa.gov/air/caa/title3.html
15. Warren, B.; Austin, R. L.; Cocker Iii, D. R., Temperature dependence of secondary organic aerosol. Atmospheric Environment 2009, 43, (22-23), 3548-3555.
16. Ryerson, T. B.; Trainer, M.; Holloway, J. S.; Parrish, D. D.; Huey, L. G.; Sueper, D. T.; Frost, G. J.; Donnelly, S. G.; Schauffler, S.; Atlas, E. L.; Kuster, W. C.; Golden, P. D.; Hubler, G.; Meagher, J. F.; Fehsenfeld, F. C., Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 2001, 292, 719-723.
17. http://www.epa.gov/oar/oaqps/pams/
18. 中華民國行政院環保署空氣品質監測網
19. Helmig, D.; Bottenheim, J.; Lewis, A.; Penkett, S.; Plass-Duelmer, C.; Reimann, S.; Tans, P.; Thiel, S., Volatile organic compounds in the global atmosphere. EOS. 2009, 90, 513-514.
20. , A. M.; Lindley R. U.; Orr-Ewing, A. J., Combining preconcentration of air samples with cavity ring-down spectroscopy for detection of trace volatile organic compounds in the atmosphere. Anal. Chem. 2004, 76, 7329-7335.
21. Wanke, T.; Vehlow, J. G., IMR-MS on-line measurements in the exhaust gas of a municipal solid waste incineration pilot plant (Tamara). Chemosphere 1997, 34, 345-355.
22. Lindinger, W.; Hansel, A.; Jordan, A., On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. International Journal of mass spectrometry and ion processes 1998, 173, 191-241.
23. Scotter, J. M.; Langford, V. S.; Wilson, P. F.; Mcewan, M. J.; Chambers, S. T., Real-time detection of common microbial volatile organic compounds from medically important fungi by selected ion flow tube-mass spectrometry (SIFT-MS). Journal of Microbiological Methods 2005, 63, 127-134.
24. 中華民國行政院環境保護署環境檢驗所
25. Simo, R.; Grimalt, J. O.; Albaiges, J., Field sampling and analysis of volatile reduced sulphur compounds in air, water and wet sediments by cryogenic trapping and gas chromatography. Journal Chromatography A 1993, 655, 301-307.
26. http://agage.eas.gatech.edu/instruments-overview.htm.
27. Miller, B. R.; R. F.; Salameh, P. K.; Tanhua, T.; Greally, B. R.; Muhle, J.; Simmonds, P. G., Medusa: A sample preconcentration and GC/MS Detector System for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds. Anal. Chem. 2008, 80, 1536-1545.
28. Pollmann, J.; Helmig, D.; Hueber, J.; Tanner, D.; Tans, P. P., Evaluation of solid adsorbent materials for cryogen-gree trapping—gas chromatographic analysis of atmospheric C2-C6 non-methan hydrocarbons. Journal of Chromatography A 2006, 1134, 1-15.
29. Tanner, D.; Helmig, D.; Hueber, J.; Goldan, P., Gas chromatography system for the automated, unattended, and cryogen-free monitoring of C2 to C6 on-methan hydrocarbons in the remote trophophere. Journal of Chromatography A 2006, 1111, 76-88.
30. Latella, A.; Stani, G.; Cobelli, L.; Duane, M.; Junninen, H.; Astorga, C.; Larsen, B. R., Semicontinuous GC anaylysis and receptor modeling for surece apportionment of ozone precursor hydrocarbons in Bresso, Milan 2003. Journal of Chromatography A 2005, 1071, 29-39.
31. Badol, C.; Locoge, N.; Leonardis, T.; Galloo, J. C., An automated monitoring system for VOC ozone precursors in ambient air: development, implementation and data anaylsis. Analysis and Bioanalytical Chemistry 2004, 378, 1815-1827.
32. Jia-Lin, W.; Genn-Zhung, D.; Chang-Chuan Chan, Validation of a laboratory-constructed automated gas chromatography for the measurement of ozone precursors through comparison with a commercial analogy. Journal of Chromatography A 2004, 1027, 11-18.
33. Navazo, M.; Durana, N.; Alonso, L.; Gomez, M. C.; Garcia, J. A.; Ilardia, J. L.; Gangoiti, G.; Iza, J., High temporal resolution measurements of ozone precursors in a rural background station. A two year study. Environ Monit Assess 2008, 136, 53-68.
34. Hong, P.; Jia-Wei, W.; Zheng, S.; Dapeng, W.; Yafeng, G.; A cryogen-free refrigerating preconcentration device for the measurement of C2 to C4 hydrocarbons in ambient air. Analyst 2011, 136, 586-590.
35. Ordonez, E. D.; Vega, A.; Coca, J., Adsorption characterisatoin of different volatile organic compounds over alumina, zeolites and activated carbon using inverse gas chromatography. Journal of Chromatography A 2004, 1049, 139-146.
36. Giraudet, S.; Pre, P.; Cloirec, P. L., Modeling the heat and mass transfer in temperature-swing adsorption of volatile organic compounds onto activated carbons. Environ. Sci. Technol. 2009, 43, 1173-1179.
37. Engewald, W.; Porschmann, J.; Welsch, T., Graphitized thermal carbon black as a shape-selective stationary phase in GC. Chromatographia 1990, 30, 537-542.
38. Mastrogiacomo, A. R.; Pierini, E.; Sampaolo, L.; Bruner, F., Evaluation of a new graphitized carbon black employed in sampling volatile organic compounds. Journal of Chromatography A 1998, 810, 131-139.
39. Alfeeli, B.; Zareian-Jahromi, M. A.; Agah, M., Model-aided Characterization of Tenax-Ta for aromatic compound uptake from water. Environmental Toxicology and Chemistry 2004, 23, 1592-1599.
40. Hay, A. S., Process of making poly-(2,6-diary-1,4,-phenylene Ethers). US Patent, 1969, 3, 432-466.
41. Sakodynskii, K.; Panina, L.; Klinskaya, N., A study of some properties of Tenax, a porous polymer sorbent. Chromatographia 1974, 7, 339-345.
42. Bertsch, W.; Zlatkis, A.; Liebich, H. M.; Schneider, H. J., Concentration and analysis of organic volatiles in Skylab 4. Journal of Chromatography A 1974, 99, 673-687.
43. Helmig, D.; Vierling, L., Water adsorption capacity of the solid adsorbents Tenax Ta, Tenax GR, Carbotrap, Carbotrap C, Carbosieve SIII, and Carboxen 569 and water management techniques for the atmospheric sampling of volatile organic tracer gases. Anal. Chem. 1995, 67, 4380-4386.
44. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of highly order carbon molecular sieve via template-mediated structural transformation. J. Phys. Chem. B 1999, 103, 7743-7746.
45. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-712.
46. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E., Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834-10843.
47. Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Synthesis and applications supramolecular-templated mesoporous materials. Angewandte Chemie International Edition 1999, 38, 56-77.
48. Tung-Ming W.; Gy-Ron, W.; Hsien-Ming K.; Jia-Lin W., Using mesoporous silica MCM4-1 for in-line enrichment of atmospheric volatile organic compounds. Journal of Chromatography A 2006, 1105, 168-178.
49. Yuan-Chang, S.; Hsien-Ming, K.; Jia-Lin, W.; Mesoporous silicate MCM-48 as an enrichment medium for ambient volatile organic compound analysis. Jounal of Chromatography A 2010, 1217, 5643-5651.
50. 許嘉鴻; 蔣孝澈, 水熱碳化之蔗糖以氫氧化鉀活化製備活性碳及其性質. 國立中央大學化學工程與材料工程學系研究所碩士論文, 2009.
51. Titirici, M.; Thomas, A.; Antonietti, M., Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J. Chem. 2007, 31, 787-789.
52. Berl, E.; Schmmidt, A.; Genesis of coals. II. Coalification of cellulose and lignin in neutral medium. Justus liebigs Annalen der Chemie 1932, 493, 97-123.
53. Qing, W.; Hong, L.; Liquan, C.; Xuejie, H., Monodispersed hard carbon spherules with uniform nanopores. Carbon 2001, 39, 2211-2214.
54. Qing, W.; Hong, L.; Liquan, C.; Xuejie, H., Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ionics 2002, 152-153, 43-50.
55. Xianjin, C.; Antonietti, M.; Shu-Hong, Y., Structural effects of iron oxide nanoparticles and iron on the hydrothermal carbonization of starch and rice carbohydrates. Small 2006, 6, 756-759.
56. Chieh-Heng, W.; Sen-Wei C.; Jia-Lin, W.; Simultaneous analysis of atmospheric halocarbons and non-methane hydrocarbons using two-dimension gas chromatography.
57. Harris, C. D., Quantitative Chemical Analysis. 5th ed.; W. H. Freeman and Company: California, 1999.
58. 蘇源昌;王家麟, 自動氣相層析質譜儀於分析揮發性有機化合物之硬體研究與實測應用. 2011.
59. www.sigmaaldrich.com/cataglog/ProductDetail.do
指導教授 王家麟(Jia-lin Wang) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明