博碩士論文 962306012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.119.253.93
姓名 李建霖(Chien-in Li)  查詢紙本館藏   畢業系所 光電科學研究所碩士在職專班
論文名稱 非共平面雙波導光路之光連接模組
(Optical interconnect module with dual non-coplanar guide-wave optical paths)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組
★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組★ 利用光展量概念之微型投影機光學設計方法與實作
★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 中文摘要
本研究提出一個非共平面雙波導光路之光連接模組,其主要結構為一分光光路,此技術可應用於晶片內或晶片與晶片間光學訊號傳遞及擴充,也可作為檢視光學訊號的完整性。在架構上,模組屬於主動電子元件與與被動光子元件異側之光連接架構,利用波長為1550 nm的紅外光源穿透SOI基板,經過具光學品質的45°反射面達到非共平面光學耦合,透過分光結構可分為雙光路,再藉由具光學品質之45°反射面,將雙光路反射穿透SOI晶圓至主動電子元件層接收,將光電訊號做進一步的整合。光強的比例部分,可藉由調整經過 45°反射面達到非共平面光學耦合的波導寬度,進而得到不同比例的光強。此非共平面雙波導光路包含45°斜面反射溝槽、梯形脊狀波導與分光路結構波導。
  本研究完成非共平面雙波導光路之光學模擬、製程與光學特性量測。上底寬40 ~75 μm的非共平面轉折波導光路,其插入損耗量測值在-3.04 dB至-3.22 dB。上底寬40 ~75 μm的非共平面雙波導光路的總插入損耗介於-3.46 ~ -3.9 dB,與非共平面轉折波導光路相比較插入損耗平均增加0.51 dB。上底寬40~75 μm非共平面雙波導光路之插入損耗,光路1量測值為-4.72 ~ -6.13 dB,光路2量測值為-11.48 ~ -6.86 dB。在雙光路的光強比例部分,可從8.3 : 1.7調整至5.4 : 4.6,並隨著上底寬的增加,光路1產生遞減的趨勢,而光路2則產生遞增的趨勢。上底寬45 μm的入射端的單模光纖位移容忍度,在水平方向(X軸方向)耦合能量損失1 dB時,光路1為50 μm與光路2為50 μm。垂直方向(Z軸方向)耦合能量損失1 dB時,光路1為26 μm與光路2為24 μm。上底寬55 μm的入射端的單模光纖位移容忍度,在水平方向(X軸方向)耦合能量損失1 dB時,光路1為52 μm與光路2為37 μm。垂直方向(Z軸方向)耦合能量損失1 dB時,光路1為25 μm與光路2為20 μm。
摘要(英) This research involves the design and evaluation of an optical interconnect module with non-coplanar dual waveguide paths. The primary feature of this module is a split optical path that can be used for transmission of optical signals within a chip or between chips, and can also be used to check the integrity of the optical signal. The module can serve as an optical interconnect framework between active electronic components and passive photon components are opposite side. The non-coplanar optical coupling is accomplished in the following manner. A 1550 nm infrared source first passes through a SOI substrate and is reflected from a 45-degree optical quality surface. It is then split into dual optical paths. Then it’s by using the 45-degree reflect surface to reflect the dual optical paths through the SOI substrate to active electronic component receiver to integrate the optical- electrical signal. The proportion of optical intensity is able to be adjusted by changing the width of waveguide that pass through the 45-degree reflect surface. Even further to get different proportion of optical intensity. This non-coplanar dual waveguide of optical paths includes 45-degree reflection groove,
trapezoidal ridge waveguide and optical splitter waveguide.
A laboratory model of the module was designed, fabricated, and key optical performance characteristics were evaluated. The insertion loss of upper-base-width 40~75μm non-coplanar bending waveguide is -3.04 to -3.22 dB. The total insertion loss of upper-base-width 40~75 μm non-coplanar dual waveguide is between -3.46 to -3.9 dB. Compared with non-coplanar bending waveguide, the total insertion loss averagely increases 0.51 dB. The measurements of insertion loss of upper-base-width 40 ~ 75 μm non-coplanar waveguide are -4.72 ~ -6.13 dB on optical path 1, and -11.48 ~ -6.86 dB on optical path 2. The proportion of optical intensity of dual optical path can be adjusted from 8.3 : 1.7 to 5.4 : 4.6, with the increase of upper-base- width, optical path 1 decrease and optical path 2 increase. Optical single mode fiber misalignment tolerance was also measured. For the 45 μm width module, 50 μm in path 1 and 50 μm in path 2 resulted in a horizontal (x-axis) loss of 1 dB, while for a 1 dB vertical (z-axis) loss, the corresponding tolerances were 26 μm for path 1 and 24 μm for path 2, respectively. For the 55 μm width module, the corresponding tolerances were 52 μm and 37 μm (horizontal 1 dB) and 25 μm and 20 μm (vertical 1dB),
respectively.
關鍵字(中) ★ 光連接模組
★ 雙波導
★ 非共平面
關鍵字(英) ★ dual waveguide
★ non-coplanar
★ Optical interconnect module
論文目次 中文摘要…………………………………………………………………i
英文摘要………………………………………………………………iii
目錄………………………………………………………………………v
圖目錄…………………………………………………………………vii
表目錄………………………………………………………………xii
第一章 序論 …………………………………………………………1
1-1 前言 ………………………………………………………1
1-2 研究動機與目的 …………………………………………7
第二章 非共平面雙波導光路設計………………………………10
2-1非共平面雙波導光路之SOI晶圓規格評估……………10
2-2非共平面雙波導光路之波導結構設計……………13
2-3 非共平面雙波導光路光學準位分析…………………16
2-3.1 非共平面轉折波導光路及雙波導光路之插入損耗
模擬……………………………………………16
2-3.2 非共平面雙波導光路入射光源的位移容忍度
分析……………………………………………… 20
第三章 非共平面雙波導光路之製作……………………………25
3-1 非共平面轉折波導及雙波導光路製作…………25
3-2 梯形脊狀波導端面研磨………………………………31
第四章 非共平面雙波導光路之量測與分析……………………33
4-1 非共平面轉折波導及雙波導光路之插入損耗量
測………………………………………………………33
4-1.1 非共平面轉折波導光路之插入損耗量測…33
4-1.2非共平面雙波導光路之插入損耗量測……36
4-1.3 非共平面雙波導光路之製程結果結構重建與光學分析 39
4-2 非共平面雙波導光路入射光源位移容忍度量
測 …………………………………………………… 42
第五章 結論與未來展望……………………………………………47
參考文章………………………………………………………………50
參考文獻 1. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, (1997)
2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proceedings of the IEEE 88 (6), 728-749, (2000)
3. R. Ho, K. Mai, and M. Horowitz,“The Future of Wires,” Proceedings of the IEEE, pp. 490-504, Apr (2001)
4. R. Heming, L. C. wittig, P. Dannberg, J. Jahns, E. B. Kley, and M.Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE J. Lightwave Technol., 26, 2136-2141 (2008).
5. P. Lukowicz et al., “Optoelectronic interconnection technology in the HOLMS system,” IEEE J. Sel. Top. Quantum Electron., 9, 624-635 (2003).
6. H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processesfor volume production of highly reliable fiber optic components for telecom- anddatacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B, 21, 147-156 (1998).
7. J. Yeh, R. K. Kostuk, and K. Tu, “Hybrid free-space optical bus system for board-to-board interconnections,” Appl. Opt., vol. 35, no. 32, pp. 354–6364, (1996)
8. Berkehan Ciftcioglu, Rebecca Berman, Jian Zhang, Zach Darling, Shang Wang, Jianyun Hu, Jing Xue, Alok Garg, Manish Jain, Ioannis Savidis, Duncan Moore, Michael Huang, Eby G. Friedman, Gary Wicks, and Hui Wu, “A 3-D Integrated Intrachip Free-Space Optical Interconnect for Many-Core Chips”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 23, NO. 3, FEBRUARY 1, 2011.
9. Yuzo Ishii, Shinji Koike, Yoshimitsu Arai, and Yasuhiro Ando“SMT-Compatible Optical-I/O Chip Packaging for Chip-Level Optical Interconnects” 2001 Electronic Components and Technology Conference
10. 沈帛寬,”具45°反射面之非共平面轉折波導光路,” (中央大學電所碩士論文, 台灣, 2010)
11. H. C. Lan, H. L. Hsiao, C. C. Chang, C. H. Hsu, C. M. Wang, M. L. Wu,“Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45° micro-reflector,” Opt. Express, 17, 20938-20944 (2009).
12. B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Mahdavan, A. F. J.Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical interconnects,” IEEE J. Lightwave Technol., 22, 2043-2054 (2004).
13. F. Wang, F. Liu, and A. Adibi, “45 degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express, 17, 10514-10521 (2009).
14. 張育誠, “微型光學讀取頭之元件,” (中央大學光電所碩士論文, 台灣, 2003).
15. I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sensors and Actuators A: Physical, 84, p. 116-125 (2000)
16. I. Zubel, “Silicon anisotropic etching in alkaline solutions IV – The effect of organic and inorganic agents on silicon nisotropic etching process,” Sensors and Actuators A: Physical, 87, p. 163-171 (2001)
17. I. Zubel, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A: Physical, 93, p. 138-147 (2001)
18. M. Shikida, K. Tokoro, D. Uchikawa, K. Sato, Surface morphology of anisotropically etched single-crystal silicon, J. Micromech. Microeng.10 (2000) 522–527.
19. K. Sato, M. Shikida, T. Yamashiro, M. Tsunekawa, S. Ito, Roughen- ing of single crystal silicon surface etched by KOH water solutions, Sens. Actuators A 73 (1999) 122–130.
20. M. Shikida, K. Sato, K. Tokoro, D. Uchikawa, Differences in anisotropic etching properties of KOH and TMAH solutions, Sens. Actuators A 80 (2000) 179–188.
指導教授 伍茂仁(Mount-Learn Wu) 審核日期 2011-10-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明