博碩士論文 992206044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:18.220.75.97
姓名 劉瑋瑋(Wei-Wei Liu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 白光LED之螢光粉熱衰探討
(Thermal effect on phosphors applied in LEDs)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,為了解現今白光LEDs於正常驅動下,晶片產生的熱對螢光粉造成的效應,於是我們建立了一套螢光粉熱衰的光學量測架構與流程,且對實驗架構進行公差分析,將此系統對目前白光LEDs常用的螢光粉體進行熱衰研究,實驗中除了探討螢光粉遇熱時的頻譜變化及出光效率的改變外,亦對螢光粉熱衰行為,進行濃度、厚度與粒子數的實驗與分析,以數據化的方式呈現結果。期待在未來能將螢光粉熱衰行為運用來預測LEDs的整體光學行為,並提供準確的數據和建議。
摘要(英) The heat was inevitably generated from chips when light-emitting diodes (LEDs) were driven at working current. The quantity of heat affects the characteristic of phosphors. This thesis devoted to study the thermal effect on different kinds of phosphors that are commonly used in LEDs. This study establish an experimental setup and procedures which was analyzed its tolerance to derive this phenomenon. Except for measuring the shift in spectrum and thermal degradation in phosphors, this study also vary distinct parameters such as concentration, thickness, and particle numbers to study the correlation between the optical properties. It is possible to anticipate the optical performance when combining the luminescent behaviour of phosphor under thermal aging to provide accurate proposition in the future.
關鍵字(中) ★ 熱衰
★ 螢光粉
★ 發光二極體
關鍵字(英) ★ LED
★ Phosphor
★ Thermal Effect
論文目次 摘要..................................................................................................................i
英文摘要.........................................................................................................ii
致謝................................................................................................................iii
目錄................................................................................................................v
圖索引............................................................................................................ix
表索引..........................................................................................................xiv
第一章 緒論...............................................................................................1
1.1 前言......................................................................................................1
1.2 LED背景..............................................................................................2
1.3 研究動機與目的..................................................................................6
1.4 研究大綱............................................................................................10
第二章 基本原理.....................................................................................11
2.1 引言....................................................................................................11
2.2 螢光粉材料特性及發光行為................................................................11
2.2.1 YAG螢光粉................................................................................15
2.2.2 Silicate螢光粉.............................................................................16
2.2.3 Nitride螢光粉..............................................................................17
2.3 螢光粉轉換效率....................................................................................18
2.4 螢光粉熱衰............................................................................................19
2.5 色彩簡介................................................................................................20
2.5.1CIE色度系統................................................................................21
2.5.2 色溫.............................................................................................22
第三章 螢光粉熱衰量測架構建立.........................................................24
3.1 引言....................................................................................................24
3.2 螢光片製作參數................................................................................24
3.3 熱電偶................................................................................................28
3.4 加熱系統............................................................................................29
3.5 實驗架構設置....................................................................................33
3.6 公差分析............................................................................................34
3.6.1 雷射穩定度分析.........................................................................34
3.6.2 加熱系統誤差分析.....................................................................35
3.6.3 螢光片對位誤差分析.................................................................40
第四章 螢光粉熱衰.................................................................................45
4.1 引言....................................................................................................45
4.2 黃光熱衰分析....................................................................................45
4.2.1 頻譜變化.....................................................................................46
4.2.2 色座標位移.................................................................................51
4.2.3 發光強度下降.............................................................................52
4.3 粒子數對熱衰影響............................................................................59
4.4 厚度對熱衰影響................................................................................60
4.5藍光吸收減少效應.............................................................................65
第五章 結論.............................................................................................71
參考文獻.......................................................................................................74
中英文名詞對照表.......................................................................................80
參考文獻 [1] H. J. Round, “A note on Carborundum,” Electrical Word 49, 309 (1907).
[2] G. Destriau, “Scintillations of zinc sulfides with alpha-rays,” J. Chem. Phys. 33, 620 (1936).
[3] H. Welker, “On new semiconducting compounds (translated from German),” Zeitschrift für Naturforschung 7a, 744 (1952).
[4] H. Welker, “On new semiconducting compounds II (translated from German),” Zeitschrift für Naturforschung 8a, 248 (1953).
[5] N. J. Holonyak and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[6] C. P. Kuo, R. M. Fletcher, T. D. Ostenkowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
[7] S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting diodes,” Appl. Phys. Lett. 62, 2390 (1993).
[8] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[9] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green, and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797-L799 (1995).
[10] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69, 4056 (1996).
[11] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Spinger, Japan, 1997).
[12] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[13] Nichia Corporation, http://www.nichia.co.jp/en/about_nichia/index.html.
[14] Cree, http://www.cree.com/.
[15] 孫慶成,「螢光粉模型與LED光色的控制」,2008固態照明研討論文集,國立中央大學,中壢市,中華民國九十七年。
[16] M. Liu and B. Rong, “Evaluation of LED application in general lighting,” Opt. Eng. 46, 1-6 (2007).
[17] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
[18] J. Y. Tsao, “Solid-state lighting: Lamp targets and implications for the semiconductor chip,” IEEE Circuits and Devices 20, 28-37 (2004).
[19] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
[20] T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflector and UV-based light source having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
[21] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
[22] Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett. 34, 1–3 (2009).
[23] 陳靜儀,矽酸鹽螢光粉用於白光LED之光學模型,國立中央大學光電科學研究所碩士論文,中華民國九十七年。
[24] M. H. Crawford, “LEDs for solid-state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15, 1028-1039 (2009).
[25] E. F Schubert, L. W. Tu, G. J. Zydzik, R. F. Kopf, A. Benvenuti, and M. R. Pinto, “Elimination of heterojunction band discontinuities by modulation doping,” Appl. Phys. Lett. 60, 466-468 (1992).
[26] J. K. Sheu and G. C. Chi, “The doping process and dopant characteristics of GaN,” J. Phys. 14, R657-R702 (2002).
[27] F. So, J. Kido, and P. E. Burrows, “Organic light-emitting diodes for solid-state lighting,” MRS Bull. 33, 663–669 (2008).
[28] C. A. Gaw and D. L. Rode, “Electrical contact for an LED,” United States Patent, US 4864370 (1989).
[29] K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, and M. G. Craford, “Twofold efficiency improvement in high performance AlGaInP light‐emitting diodes in the 555–620nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045-1047 (1992).
[30] R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology,” Appl. Phys. Lett. 75, 154-156 (1999).
[31] R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP Light-emitting diodes with mirror substrates fabricated by wafer bonding,” Appl. Phys. Lett. 75, 3054-3056 (1999).
[32] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high‐efficiency semiconductor wafer‐bonded transparent‐substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839-2841 (1994).
[33] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. 78, 3379–3381 (2001).
[34] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
[35] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855–857 (2004).
[36] D. S. Han, J. Y. Kim, S. I. Na, S. H. Kim, K. D. Lee, B. Kim, and S. J. Park, “Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side surface of sapphire substrate,” IEEE Photo. Techno. Lett. 18, 1406-1408 (2006).
[37] Z. H. Feng, Y. D. Qi, Z. D. Lu, and K. M. Lau, “GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy,” J. Cryst. Growth 272, 327-332 (2004).
[38] 李宗憲,氮化鎵發光二極體之光萃取效率分析與晶片設計,國立中央大學光電科學研究所博士論文,中華民國九十七年。
[39] M. Kottaisamy, P. Thiyagarajan, J. Mishra, and M.S. R. Rao, “Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs,” Mater. Res. Bull. 43, 1657-1663 (2008).
[40] J. L. Wu, G. Gundiah, and A. K. Cheetham, “Structure–property correlations in Ce-doped garnet phosphors for use in solid state lighting,” Chem. Phys. Lett. 441, 250-254 (2007).
[41] H. S. Jang, H. Yang, S. W. Kim, J. Y. Han, S. G. Lee, and D. Y. Jeon, “White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5:Ce3+,Li+ phosphors,” Adv. Mater. 20, 2696–2702 (2008).
[42] B. Hou, H. Rao, and J. Li, “Methods of increasing luminous efficiency of phosphor-converted LED realized by conformal phosphor coating,” J. Display Technol. 5, 57–60 (2009).
[43] H. Tao. Huang, C. C. Tsai, and Y. P. Huang, “Conformal phosphor coating using pulsed spray to reduce color deviation of white LEDs,” Optics Express 18, A201-A206 (2010).
[44] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor-configuration,” Optics Express 18, 5055-5060 (2010).
[45] J. R. Oh, Y. H. Lee, S. H. Cho, and Y. R. Do, “Enhanced forward efficiency of Y3Al5O12:Ce3+ phosphor from white light-emitting diodes using blue-pass yellow-reflection filter,” Optics Express 17, 7450-7457(2009).
[46] J. R. Oh, S. H. Cho, Y. H. Lee, and Y. R. Do, “Lowering color temperature of Y3Al5O12:Ce3+ white light emitting diodes using reddish light-recycling filter,” Electrochem. Solid-State Lett. 13, J5–J7 (2010).
[47] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solid A202, R60–R62 (2005).
[48] S. J. Duclos, J. Jansma, J. C. Bortschller, and R. J. Wojnarowski, “Phosphor coating with self-adjusting distance from LED chip,” United States Patent, US 6635363 B1 (2003).
[49] B. Yan, J. P. You, N. T. Tran, Y. He, and F. G. Shi, “Influence of die attach layer on thermal performance of high power light emitting diodes,” IEEE Transactions on Components and Packaging Technologies 33, 722-727 (2009).
[50] Y. Xi and E.F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163-2165 (2004).
[51] Y. K. Kuo, J. Y. Chang, K. K. Horng, Y. L. Huang, Y. Chang, and H. C. Huang, “Temperature dependent optical properties of the InGaN semiconductor materials: Experimental and numerical studies,” Proc. SPIE, 4078, 579-586 (2000).
[52] M. Arik, J. Petroski, and S. Weaver, “Thermal challenges in the future generation solid-state lighting applications: Light emitting diodes”, in Proceeding of the ASME/IEEE ITHERM-Conference (IEEE, San Diego, 2002).
[53] M. Arik, C. Becker, S. Weaver, and J. Petroski, “Thermal management of LEDs: Package to system,” Proc. SPIE 5187, 64-75 (2004).
[54] M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelect. Rel. 47, 1625-1629 (2007).
[55] S. Shionoya and W. M. Yen, Phosphor Handbook (CRC Press, Florence, 1999).
[56] L. Jayasinghe, Y. Gu, and N. Narendran, “Characterization of thermal resistance coefficient of high-power LEDs,” Proc. SPIE 6337, 1-7 (2006).
[57] B. Fan, H. Wu, Y. Zhao, Y. Xian, B. Zhang, and G. Wang, “Thermal study of high-power nitride-based flip-chip light-emitting diodes,” IEEE Transactions on Electron Devices 55, 3375–3382 (2008).
[58] Y.C. Kang, S. B. Park, I.W. Lenggoro, and K. Okuyama, “Morphology control of multicomponent oxide phosphor particles containing high ductility component by high temperature spray pyrolysis,” J. Electrochem. Soc. 146, 2744-2747 (1999).
[59] W. Park, B. K.Wagner, G. Russell, K. Yasuda, C. J. Summers, Y. R. Do, and H. G.Yang, “Thin SiO2 coating on ZnS phosphors for improved low-voltage cathodoluminescence properties,” J. Mater. Res. 15, 2288-2291 (2000).
[60] B. Fan, H. Wu, Y. Zhao, Y. Xian, and G. Wang, “Study of phosphor thermal-isolated packaging technologies for high-power white light emitting diodes,” IEEE Photon. Technol. Lett. 19, 1121–1123 (2007).
[61] H. Yamamoto, “White LED phosphors: The next step,” Proc. of SPIE 7598, 759808 (2010).
[62] R. J. Xie, N. Hirosaki, M. Mitomo, Y. Yamamoto, T. Suehiro, and N. Ohashi, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101 (2007).
[63] J. K. Park, C. H. Kim, S. H. Park, H. D. Park, and S. Y. Choi, “Application of strontium silicate yellow phosphor for white light-emitting diodes,” Appl. Phys. Lett. 84, 1647 (2004).
[64] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[65] R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Hoppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light emitting diode,” Phys. Stat. Sol. 9, 1727-1732 (2005).
[66] A. Žukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting (Wiley, Hoboken, 2002).
[67] E. F. Schubert, Light Emitting Diodes (Cambridge, New York, 2003).
[68] IUPAC Compendium of Chemical Terminology, http://old.iupac.org/publications/compendium/index.html.
[69] 劉如熹和王健源,白光發光二極體製作技術-21世紀人類的新曙光,全華科技圖書公司,台灣,中華民國九十年。
[70] 大田 登,色彩工程學-理論與應用,全華科技圖書公司,台灣,民國九十七年。
[71] G. Blasse and A. Bril, “Investigation of some Ce3+-activated phosphors,” J. Chem. Phys. 47, 5139-5145 (1967).
[72] 劉如熹,白光發光二極體用螢光粉最新發展,LED固態照明研討會論文集,國立中央大學,中壢市,中華民國九十七年。
[73] P. L. Li, Z. P. Yang, Z. J. Wang, Q. L. Guo, and X. Li, “Preparation and luminescence characteristics of Sr3SiO5:Eu2+ phosphor for white LED,” Chin. Sci. Bull. 53, 974-977 (2008).
[74] C. K. Jørgensen, “The Nephelauxetic Series,” Prog. Inorg. Chem. 4, 73-124 (1962).
[75] K. A. Klinedinst and R. F. Clark, “Nitride coated particle and composition of matter comprised of such particles,” United States Patent, US 6064150 (2000).
[76] N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined-atom-based nanophosphors for solid state lighting,” Proc. SPIE 5187, 133-141 (2004).
[77] R. Mueller-Mach, G. Mueller, M. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Topics Quantum Electron. 8, 339-345 (2002).
[78] R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination-grade white pcLEDs,” Proc. SPIE 5187, 115-122 (2004).
[79] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physics 34, 149-154 (1967).
[80] H. A. Jahn and E. Teller, “Stability of polyatomic molecules in degenerate electronic states. I. orbital degeneracy,” Proc. Roy. Soc. 161, 220-235 (1937).
[81] J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, and H. L. Park, “Temperature-dependent emission spectra of M2SiO4:Eu2+ (M=Ca, Sr, Ba) phosphor for green and greenish white LEDs,” Solid State Commun. 133, 445-448 (2005).
[82] P. K. Brown and G. Wald, “Visual pigments in single rods and cones of human retina,” Science 144, 45-52 (1964).
[83] D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Amer. 32, 247–274 (1942).
[84] D. Eastwood, “A simple modification to improve the visual uniformity of the CIE 1964 u*v*w* colour space,” Proceedings of the Second Congress of the International Colour Association 73, 293-296 (1973).
[85] Color Chromaticity Diagrams, http://www.efg2.com/Lab/Graphics/Colors/Chromaticity.htm.
[86] LED照明科技研究中心, http://led.ee.ncku.edu.tw/.
[87] 何信穎,白光LED之YAG螢光粉光學模型之研究,國立中央大學光電所碩士論文,中華民國九十六年。
[88] Malvern, http://www.malvern.com/.
[89] C. C. Chen, C. Y. Chen, W. T. Chien, T. H. Yang, and C. C. Sun, “Optical performance as a function of phosphor particle number in white LED,” Proc. SPIE 7786, 778606 (2010).
[90] A. W. van Herwaarden and P. M. Sarro, “Thermal sensors based on the Seebeck effect,” Sens. Actuators A 10, 321–346 (1986).
[91] T. J. Seebeck, "Magnetiche polarisation der metalle und erze durch temperatur-differenz,” Abh. Kön. Akad. Wiss., 265-373 (1822).
[92] A. W. Van Herwaarden and P. M. Sarro, “Thermal sensors based on the seebeck effect,” Sensors and Actuators 10, 321- 346 (1986).
[93] 千輔超音波電熱有限公司, http://chien-fu168.myweb.hinet.net/.
[94] Coherent, http://www.coherent.com/.
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2011-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明