博碩士論文 952406012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:52.14.240.57
姓名 李坤憲(Kun-Hsien Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 濺鍍薄膜之光學常數與界面應力
(The optical properties and interface stresses of the sputtered dielectric thin films)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 針對濺鍍之光學薄膜,本論文提出一套新的方法,在不影響薄膜的光學特性前提下,消除多層膜的殘留應力。射頻離子束濺鍍殘留應力值高達1.5GPa以上之SiNx薄膜,以離子束電壓1300V、離子束電流110mA所製鍍的單層SiN1.06薄膜,厚度250nm的殘留應力值為-2.18GPa,將此單層等分切割成四層製鍍時,其殘留應力值降為-1.38GPa,定性地驗證介電質薄膜存在著界面應力。
磁控濺鍍SiO2及Nb2O5薄膜於玻璃基板與塑膠PET基板上,薄膜的光學常數存在著差異性:SiO2、Nb2O5於PET上的折射率均分別高於其被製鍍在玻璃基板上的折射率值,而塑膠基板上的薄膜殘留應力會小於玻璃基板的殘留應力,可能是由於有機物受到電漿激發造成斷鍵,因而與薄膜分子產生化合或混合的反應,使殘留應力減小。在多層膜的實驗中,玻璃基板上的SiO2Nb2O5界面為張應力,可以作為消除應力之用,Nb2O5SiO2界面則為壓應力;在PET基板上SiO2Nb2O5和Nb2O5SiO2皆為壓應力。不論何種基板,愈上層的界面,其造成撓曲量都有增加的趨勢。
利用射頻濺鍍SiO2、Ta2O5光學薄膜堆疊高反射鏡,在單層膜的實驗中,發現殘留應力隨著切層數呈倒W形的趨勢,這是由於在切層時,子層可能尚未成膜,因此本徵壓應力會較成膜時大,當界面應力無法抵銷子層的本徵應力時,殘留壓應力會增加,如同等分切割成二層與四層製鍍單層膜之情形;而界面應力的影響若能大過於子層的本徵應力時,殘留壓應力就會減小,如同等分切割成三層與五層製鍍單層膜之情況;兩層HL的切層實驗證明能有效減低應力的切法為(H, 1/3L*3),因此利用(H, 1/3L*3)切法製鍍11層高反射鏡時,總殘留應力為-0.423GPa,與未切之高反射鏡比較,可減小其應力值約17.6%,且切層方法並未影響材料之光學常數。
摘要(英) A novel method is proposed to reduce the residual stress of multilayers without altering their optical constants. The residual stress of SiNx thin films deposited by RF ion-beam sputtering exceeds 1.5GPa. For example, the residual stress of single SiN1.06 layer deposited at ion-beam voltage of 1300V and current of 110mA is -2.18Gpa while its thickness is 250nm. If the single layer is divided equally into four parts to be fabricated, the stress decreases to the value of -1.38GPa due to the contribution of the interface stresses.
SiO2 and Nb2O5 thin films deposited by DC pulsed magnetron sputtering on both glass and PET substrates are investigated. The optical constants of films on PET differ from those on glass substrate. The refractive index of SiO2 and Nb2O5 on PET is higher than that on glass, respectively. It is due to the organic material of plastic substrate de-bonding by the plasma excitation. They are chemisorbed or mixed with the adatoms resulted in the increase of the refractive index and the decrease of the residual stress. After the analysis of the multilayer stress, the result shows the interface stress of SiO2Nb2O5 on glass is tensile but that of Nb2O5SiO2 is compressive. On PET substrate, the interface stresses of SiO2Nb2O5 and Nb2O5SiO2 are both compressive. The deflection of the upper interface is larger than that of the lower interface.
The high reflectance mirror is made up of multilayered stack of SiO2 and Ta2O5 deposited by RF ion-beam sputtering. In single layer stress measurement, the residual stress curve with the cutting layer number presents inverse W shape. This is because of the competition between the residual stress and interface stress of each sub-layer. In the experiments of HL stack and (HL)^5L, the total residual stress is reduced by the use of cut method of (H, 1/3L*3). If the cut method is (H, 1/3L*3), the residual stress of (HL)^5H stack is -0.423GPa which is lower than that fabricated by the traditional method and the reduction ratio of the residual stress is approximately 17.6%. The result of optical spectrum shows that the use of cut methods does not influence the optical constants of layers.
關鍵字(中) ★ 光學常數
★ 薄膜
★ 濺鍍
★ 界面應力
★ 切層消除應力
關鍵字(英) ★ reduction of stress
★ Sputtering
★ thin film
★ optical constants
★ interface stress
論文目次 中文摘要 I
ABSTRACT III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XIII
符號說明 XIV
第一章 緒論 1
1-1前言 1
1-2文獻回顧 5
1-3研究動機 11
1-4論文架構 12
第二章 薄膜基本理論 13
2-1薄膜成長理論 13
2-2薄膜應力 18
2-2-1 缺陷模態(Defect Model) 20
2-3-2表面張力模態(Surface Tension Model) 20
2-3-3 晶粒邊界模態(Grain Boundary Model) 20
2-3-4敲擊模態(Peening Model) 22
2-3-5 熱應力 23
2-3 應力理論 24
2-3-1 硬性基板應力 24
2-3-2 軟性基板薄膜應力 26
第三章 實驗儀器及實驗方法 31
3-1 鍍膜設備介紹 31
3-1-1脈衝式直流磁控濺鍍機 31
3-1-2 射頻離子束濺鍍機 32
3-2 量測儀器 34
3-2-1可見光-近紅外光光譜儀 34
3-2-2光學參數fitting 程式- 包絡法 35
3-2-3掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 37
3-2-4 Twyman-Green 干涉應力量測儀 40
3-2-5陰影疊紋儀 42
3-2-5 X-ray光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 44
第四章、射頻離子束濺鍍SiNx薄膜 48
4-1 薄膜製備 49
4-2 光學性質 49
4-3 殘留應力 57
4-4 本章結論 59
第五章、磁控濺鍍氧化物薄膜 60
5-1 薄膜製備 61
5-2單層SiO2薄膜 61
5-3單層膜Nb2O5 64
5-4多層氧化膜 69
5-4-1 玻璃基板 69
5-4-2軟性基板 74
5-5本章結論 77
第六章 界面應力的應用 79
6-1薄膜製備 80
6-2單層膜 81
6-3多層膜 84
6-4本章結論 88
第七章 結論與未來展望 89
參考文獻 91
參考文獻 [1] H. A. Macleod, ”Characteristics of thin-film dielectric material”, Chap. 15 in Thin-Film Optical Filters, 3rd Ed. (Academic, London, 2001), pp. 621-627.
[2] C. C. Lee, J. C. Hsu, D. T. Wei, and J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films 308-309 ,pp.74-78 (1997).
[3] L. J. Meng, M. Andrtschky and M. P. Dos Santos, ”The effect of substrate temperature on the properties of d.c. reactive magnetron sputtered titanium oxide films”, Thin Solid Films, 223, pp.242-247 (1993).
[4] W. H. Cheng, S. F. Chi, and A. K. Chu, “Effect of thermal stresses on temperature dependence of refractive index for Ta2O5 dielectric films,” Thin Solid Films, 347, pp. 233-237(1999)
[5] G. Q. Di, “Surface morphology and optical properties of Ta2O5 films prepared by radio frequency sputtering” Acta Physica Sinica, 60 (3), 038101 (2011).
[6] G. Xu, P. Jin, M. Tazawa and K. Yoshimura, ”Optical investigation of silicon nitride thin films deposited by r.f. magnetron sputtering,” Thin Solid Films, 425, pp.196-202 (2003).
[7] M. F. Lambrinos, R. Valizadeh, J. S. Colligon Electrical properties of ion beam sputtered and ion assisted SiO2, SiOxNy, and SiNx films on silicon,” Journal of Vacuum Science & Technology B, 16(2), pp. 589-598 (1998).
[8] R. P. Howson, N. Danson, G. W. Hall, “ Reactive magnetron sputtering of silicon to produce silicon oxide”, Nuclear Instruments and Methods in Physics Research B, 121, pp. 90-95, (1997).
[9] A. Tabata, N. Matsuno, Y. Suzuoki and T. Mizutani, “Optical properties and structure of SiO2 films prepared by ion-beam sputtering,” Thin Solid Films, 289, pp. 84-89, (1996).
[10] A. Hallbauer, D. Huber, G.N. Strauss, S. Schlichtherle, A. Kunz, H.K. Pulker,” Overview about the optical properties and mechanical stress of different dielectric thin films produced by reactive-low-voltage-ion-plating,” Thin Solid Films, 516, pp. 4587– 4592(2008).
[11] I. Safi,” Recent aspects concerning DC reactive magnetron sputtering of thin films: a review,” Surface and Coatings Technology, 127(2-3), pp. 203-218 (2000).
[12] J. Musil, P. Baroch, J. Vlček, K.H. Nam and J.G. Han,” Reactive magnetron sputtering of thin films: present status and trends,” Thin Solid Films, 475(1-2), pp. 208-218 (2005).
[13] 艾啟峰,“活化反應磁控濺射沉積技術新發展”,工業材料,187,pp. 101-109 (1992).
[14] O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin , U. Kaiser , J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, and M. Bitzer, M. Grössl,” The correlation between mechanical stress, thermal shift and refractive index in HfO2 , Nb2O5 , Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films, 517, pp. 6058–6068 (2009).
[15] H. Leplan and B. Geenen, J. Y. Robic, and Y. Pauleau,” Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys., 78(2), pp. 962-968(1995).
[16] C. C. Lee, H. C. Chen, and C. C. Jaing, “Effect of thermal annealing on the optical properties and residual stress of TiO2 films Produced by ion-assisted deposition,” Appl. Opt., 44, pp. 2996-3000(2005).
[17] L. Hultman, C. Engstrom, J. Birch, M. P. Johansson, M. Oden, L. Karlsson, and H. Ljungcrantz,” Review of the thermal and mechanical stability of TiN-based thin films,” Zeitschrift Fur Metallkunde, 90(10),pp. 803-813(1999).
[18] L. Liu, Y. Wang, and H. Gong,” Annealing effects of tantalum films on Si and SiO2/Si substrates in various vacuums,” Journal of Applied Physics, 90(1), pp. 416-420(2001).
[19] U. Schmid and H. Seidel,” Effect of substrate properties and thermal annealing on the resistivity of molybdenum thin films,” Thin Solid Films, 489(1-2), pp. 310-319(2005).
[20] W. J. Liu and C. H. Chien,” Influences of residual argon gas and thermal annealing on Ta2O5 thin films,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 44(1A), pp. 181-186(2005).
[21] S. Tamulevicius,“ Stress and strain in the vacuum deposited thin films,” Vacuum, 51(2), pp.127-139(1998) .
[22] S. J. Bull, A. M. Jones, and A. R. Mccabe,” Residual-stress in ion-assisted coatings,” Surface & Coatings Technology, 54(1-3), pp. 173-179(1992).
[23] N. Durand, K. F. Badawi, P. Goudeau,” Residual stresses and microstructure in tungsten thin films analyzed by x-ray diffraction-evolution under ion irradiation,” Journal of Applied Physics, 80(9), pp. 5021-5027(1996).
[24] S. G. Mayr and R. S. Averback,” Effect of ion bombardment on stress in thin metal films,” Physical Review B, 68(21), 214105(2003).
[25] A. Misra, S. Fayeulle, H. Kung, T. E. Mitchell, and M. Nastasi,” Effects of ion irradiation on the residual stresses in Cr thin films ,” Applied Physics Letters, 73(7), pp.891-893(1998).
[26] H. Lu , Y. Q. Tu, X. A. Lin , B. Fang , D. B. Luo,” Laaksonen AEffects of laser irradiation on the structure and optical properties of ZnO thin films,” Materials Letters, 64(19), pp. 2072-2075(2010).
[27] Y. Sano, N. Mukai, K. Okazaki, and M. Obata,” Residual stress improvement in metal surface by underwater laser irradiation,” Nuclear Instruments & Methods in Physics Research Section B-beam Interactions with Materials and Atoms, 121(1-4), pp. 432-436(1997).
[28] B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han,” Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Optics Letters, 26(21), pp. 1657-1659(2001)
[29] E. Cappelli, C. Scilletta , S. Orlando , V. Valentini, and M. Servidori,” Laser annealing of amorphous carbon films,” Applied Surface Science, 255(10), pp. 5620-5625(2009) .
[30] N. Arimitsu, A. Nakajima, K. Saito, Y. Kameshima, K. Okada,” Effects of vacuum ultraviolet light illumination on the residual stress in sol-gel-derived titanium dioxide films,” Chemistry Letters, 36(1), pp. 106-107(2007).
[31] T. Matsumoto, N. Ikuta, M. Mori, K. Nagayama,” Mechanics of wrinkle formation: micromechanical analysis of skin deformation during wrinkle formation in ultraviolet-irradiated mice,” Skin Research and Technology, 16(2), pp.179-189(2010).
[32] A. L. Del Vecchio and F. Spaepen,” The effect of deposition rate on the intrinsic stress in copper and silver thin films,” Journal of Applied Physics, 101, 063518(2007).
[33] J. A. Ruud, A. Witvrouw, and F. Spaepen,” Bulk and interface stresses in silver-nickel multilayered thin films” J. Appl. Phys., 74(4), pp.2517-2523( 1993)
[34] A. L. Shull and F. Spaepen,” Measurements of stress during vapor deposition of copper and silver thin films and multilayers,” J. Appl. Phys. 80(11), pp. 6243-6256(1996).
[35] E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, and S. J. Hearne,” Origin of Compressive Residual Stress in Polycrystalline Thin Films,” Physical Review Letters, 88(15), 156103(2002).
[36] J. A. Floro, P. G. Kotula, S. C. Seel, and D. J. Srolovitz,” Origins of Growth Stresses in Amorphous Semiconductor Thin Films,” Physical Review Letters, 91(9), 096101(2003).
[37] S. C. Seel and C. V. Thompson,” Tensile stress evolution during deposition of Volmer-Weber thin films,” J. Appl. Phys., 88(12), pp. 7079-7088(2000).
[38] J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson,” The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer-Weber thin films,” J. Appl. Phys., 89(9), pp. 4886-4897(2001).
[39] F. Spaepen,” Interfaces and stresses in thin films,” Acta mater., 48, pp. 31-42(2000).
[40] V. Ramaswamy , W.D. Nix, B.M. Clemens,” Coherency and surface stress effects in metal multilayers,” Scripta Materialia, 50, pp. 711–715(2004).
[41] N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt. 41, 3053-3060 (2002).
[42] J. A. Thornton,“ Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol. 11, pp. 666-672 (1974).
[43] R. W. Hoffman, in physical of nonmetallic Thin films, edited by C.H.S. Dupuy and A. Cachard, Plenum Press: New York, pp. 273 (1969).
[44] J. D. Finegan and R.W. Hoffman, “Stress anisotropy in evaporated Iron Films,” J. Appl. Phys. 30, pp. 597-598 (1959).
[45] R.W. Hoffman and H. S. Story,” Stress Annealing in Copper Films,” J. Appl. Phys. 27, 193 (1956).
[46] R. W. Hoffman and F.J. Anders, J. Appl. Phys. 23, 231 (1953).
[47] H. K. Pulker. “Mechanical properties of optical films,” Thin Solid Films, 89, 191 (1982).
[48] R. C. Sun, T. C. Tisone, P. D. Cruzan,” The origin of internal stress in low-voltage sputtered tungsten films,” J. Appl. Phy. 46(1), (1975).
[49] W. D. Nix, “Mechanical Properties of thin films,” Metallurgical Trans. A, 20, pp. 2217-2245 (1989).
[50] J. A. Floro, E. Chason, S. R. Lee,“Real time measurementof epilayer strain using a simplified wafer curvature technique,” Mater. Res. Soc. Symp. Proc., 406, 491 (1996).
[51] F. M. D’Hecurle, “Aluminum films deposited by rf sputtering,” Metallurgical Trans., I, pp. 725-732 (1970).
[52] K. H. Muller, “Model for ion assisted thin film densification.” J. Appl. Phys., 59, 2803 (1986).
[53] K. H. Muller, “Ion-beam induced epitaxial vapour-phase growth: a molecular dynamics study,” Phys. Rev.B, 35, 7906 (1987).
[54] K. H. Muller,” Stress and microstructure of sputter deposited thin films: molecular dynamics investigations,” J. Appl. Phys., 62, 1796 (1987).
[55] H. Windischmann, “An Intrinsic Stress Scaling Law for Polycrystalline Thin Film Prepared by Ion Beam Sputtering”, J. Appl. Phys., 62, pp. 1800-1807 (1987).
[56] C. A. Davis, “A simple model for the formation of compressive stress film by ion bombardment,” Thin Solid Films, 226, 30 (1993).
[57] L. B. Freund, S. Suresh, ” Thin film materials : stress, defect formation and surface evolution ”, Cambridge, UK, chapter 2,2003.
[58] A.E. Ennos, “Stress developed in optical film coatings”, Appl. Opt., 5, pp.51-61(1966).
[59] G. C. A. M. Janssen,” Stress and strain in polycrystalline thin film”, Thin Solid Films, 515(17), pp. 6654~6664( 2007).
[60] C. J. Chen,” Introduction to Scanning Tunneling Microscopy,” Oxford University Press, New York ,1993.
[61] G. G. Stoney,“ The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A , 82, 172–175 (1909).
[62] K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamirin, J. Hedman, G. Johansson, T. Bergmark, S. E. Karlsson, I. Lindgren, and B. Lindgren, Atomic ,Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Almqvist & Wiksells, Stockholm, 1967.
[63] G. Koley, V. Tilak, L. F. Eastman, and M. G. Spencer,” Slow transients observed in AlGaN/GaN HFETs: effects of SiNx passivation and UV illumination,” IEEE Transactions on Electron Devices, 50(4), pp. 886-893(2003)
[64] .H Mackel and R. Ludemann,” Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation,” J. Appl. Phys., 92(5), pp. 2602-2609 (2002).
[65] W. D. Huang, X. H. Wang, M. Sheng, L. Q. Xu, F. Stubhan, L. Luo, T. Feng, X. Wang, F. M. Zhang, and S. C. Zou,” Low temperature PECVD SiNx films applied in OLED packaging,” Materials Science and Engineering B-solid State Materials for Advanced Technology, 98(3), pp. 248-254(2003).
[66] A. A. Abdallah, K. Lu, C. D. Ovchinnikov, C. W. Bulle-Lieuwma, P. C. P. Bouten, and G. With,” The adhesion of SiNx thin layers on silica-acrylate coated polymer substrates,” Surface & Coatings Technology, 204(1-2), pp.78-84(2009).
[67] S. Guruvenket, D. Li, J. E. Klemberg-Sapieha, L. Martinu, and J. Szpunar,” Mechanical and tribological properties of duplex treated TiN, nc-TiN/a-SiNx and nc-TiCN/a-SiCN coatings deposited on 410 low alloy stainless steel,” Surface & Coatings Technology, 203(19), pp.2905-2911(2009).
[68] R. Rabe, J. M. Breguet, P. Schwaller, S. Stauss, F. J. Haug, J. Patscheider, and J. Michler,” Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope,” Thin Solid Films, 469, pp. 206-213( 2004).
[69] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai,” Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys., 93(3), pp. 1624-1630 (2003).
[70] Y. Kuo,” PECVD Silicon Nitride as a Gate Dielectric for Amorphous Silicon Thin Film Transistor” Journal of the Electrochemical Society, 142(1), pp. 186-190(1995).
[71] D. H. Yoon, S. G Yoon, and Y. T. Kim,” Refractive index and etched structure of silicon nitride waveguides fabricated by PECVD,” Thin Solid Films, 515(12), pp. 5004-5007( 2007).
[72] A. Bengi, S. J. Jang, C. I. Yeo, T. Mammadov, S. Ozcelik, and Y. T. Lee,” A comparative study on ridge waveguide laser diodes with SiO2 and SiNx passivation layers,” Surface and Interface Analysis, 42(6-7), pp. 963-965(2010).
[73] J. H. Kim and K. W. Chung,“ Microstructure and properties of silicon nitride thin films deposited by reactive bias magnetron sputtering,” J. Appl. Phys., 83(11), pp. 5831-5839 (1998).
[74] R. K. Pandey, L. S. Patil, J. P. Bange and D. K. Gautam, “Growth and characterization of silicon nitride films for optoelectronics applications,” Optical Materials, 27(2), pp. 139–146 (2004).
[75] L. S. Patil, R. K. Pandey, J. P. Bange, S. A. Gaikwad, and D. K. Gautam, “Effect of deposition temperature on the chemical properties of thermally deposited silicon nitride films,” Optical Materials, 27(4), pp. 663–670 (2005).
[76] P. L. Ong, J. Wei, E. H. Tay, and C. Iliescu, “A new fabrication method for low stress PECVD – SiNx layers,” Journal of Physics: Conference Series, 34, pp. 764–769 (2006).
[77] C. C. Lee, H. L. Chen, J. C. Hsu, and C. L. Tien, “Interference coatings based on synthesized silicon nitride,” Appl. Opt., 38(10), pp. 2078-2082 (1999).
[78] B. G. Bovard, J. Ramm, R. Hora, and F. Hanselmann, “Silicon nitride thin films by low voltage reactiveion plating: optical properties and composition,” Appl. Opt., 28(20), pp. 4436-4441 (1989).
[79] M. F. Lambrinos, R. Valizadeh, and J. S. Colligon, “Effects of bombardment on optical properties during the deposition of silicon nitride by reactive ion-beam sputtering,” Appl. Opt., 35(19), pp. 3620-3626 (1996).
[80] L. Huang, K. W. Hipps, J. T. Dickinson, U. Mazur, and X. D. Wang, “Structure and composition studies for silicon nitride thin films deposited by single ion beam sputter deposition,” Thin Solid Films, 299, pp. 104-109 (1997).
[81] D. Bouchier, G. Gautherin, C. Schwebel, and A. Bossesbouef, “Low temperature deposition of silicon nitride by reactive ion-beam sputtering,” J. Electrochem., Soc. 130, pp. 638-644 (1983).
[82] A. Grill, “Ion beam reactively sputtered silicon nitride coating,” Vacuum, 33, pp. 329-332 (1983).
[83] A. Foutier, A. Bosseboeuf, D. Bouchier, and G. Gautherin, “Annealing effect on mechanical stress in reactive ion-beam sputter-deposited silicon nitride films,” Jpn. J. Appl. Phys., 30(7), pp. 1469-1474 (1991).
[84] S. K. Ray, S. Das, C. K. Maiti, S. K. Lahiri, and N. B. Chakraborti, “Effect of reactive-ion bombardment on the properties of silicon nitride and oxynritride films deposited by ion-beam sputtering,” J. Appl. Phys., 75, pp. 8145-8152 (1994).
[85] J. Becker and V. Scheuer, “Coating for optical application produced by ion beam sputter deposition,” Appl. Opt., 29(28), pp. 4303-4309 (1990).
[86] E. Dehan, P. Temple-Boyer, R. Henda, J. J. Pedroviejo, and E. Scheid, “Optical and structural properties of SiOx and SiNx materials,” Thin Solid Films, 266, pp. 14-19 (1995).
[87] A. Batan, A. franquet, J. Vereecken, and F. Reniers, “Characterization of the silicon nitride thin films deposited by plasma magnetron,” Surf. Interface Anal. ,40, pp. 754-757 (2008).
[88] Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical Uncooled Infrared Imaging System:Design, Microfabrication, and Performance”, Journal of Microelectromechanical Systems, 11(2), pp. 136-146 (2002)
[89] P. I. Hsu, H. Gleskova, M. Huang, Z. Suo, S. Wagner, J. C. Sturm, ”Amorphous Si TFTs on plastically deformed spherical domes,” J. Non Cryst. Solids 299-302, 1355-1359 (2002).
[90] I-Chun Cheng, Alexis Kattamis, Ke Long, James C. Sturm, Sigurd Wagner, “Stress control for overlay registration in a-Si:H TFTs on flexible organic-polymer-foil substrates,” Journal of the SID 13, 563-568 (2005).
[91] Hiroto Sato, Hideo Fujikake, Takeshi Murashige, Hiroshi Kikuchi, Taiichiro Kurita, and Fumio Sato, “A4-sized flexible ferroelectric liquid-crystal displays with micro color filters,” Journal of the SID 13, 461-468 (2005).
[92] Frederik C. Krebs, “Fabrication and processing of polymer solar cells: A review of printing andcoating techniques,” Sol. Energy Mater. Sol. Cells 93, 394-412 (2009).
[93] 吳駿逸, “不同製程下以Si與SiO2為起始材料所製鍍出的SiO2 薄膜特性研究”,中央大學, 博士論文, 民國95年。
[94] Bergeron, J. E. Klemberg-Sapieha, and L. Martinu, “Structure of the interfacial region between polycarbonate and plasma deposited SiN1.3 and SiO2 optical coatings studied by ellipsometry,” J. Vac. Sci. Technol. A 16 6, pp. 3227-3234 (1998).
[95] Hofrichter, P. Bulkin, and B. Dre´ villon, “Plasma treatment of polycarbonate for improved adhesion,” J. Vac. Sci. Technol. A 20(1), pp. 245-250 (2002).
[96] 詹德均,“以氧離子束輔助磁控濺鍍光學薄膜之研究”,中央大學,博士論文,民國94年。
[97] N. T. Gabriel, S. S. Kim, and J. J. Talghader,” Control of thermal deformation in dielectric mirrors using mechanical design and atomic layer deposition,”Optics Letters, 34(13), pp. 1958-1960(2009)
[98] F. Richter, H. Kupfe, P. Schlott, T. Gessner, C. Kaufmann," Optical properties and mechanical stress in SiO2/Nb2O5 multilayers," Thin Solid Films 389, pp. 278-283(2001)
[99] C. J. Tang, C. C. Jaing, Kai Wu, C. C. Lee,” Residual stress of graded-index-like films deposited by radio frequency ion-beam sputtering ,” Thin Solid Films, 517 , pp. 1746-1749(2009).
指導教授 李正中(Cheng-Chung Lee) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明