博碩士論文 962202036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:18.218.234.83
姓名 李建緯(Chien-wei Lee)  查詢紙本館藏   畢業系所 物理學系
論文名稱 自組裝長鏈醋酸分子薄膜於θ-氧化鋁上的成長行為
(The Growth of Self-Assembled Docosanoic Acid Monolayers on θ-Al2O3 / NiAl(100))
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們使用原子力顯微鏡 (Atomic Force Microscopy, AFM) 觀察 docosanoic acid (CH3(CH2)20COOH) 自組裝分子薄膜 (Self-Assembled Monolayers, SAMs) 在θ-Al2O3/NiAl(100) 表面上的成長樣貌及穩定性。在薄膜成長初期,吸附在樣品表面的分子首先會聚核成分子島嶼增加樣品表面的分子島密度。隨著吸附的持續進行,這些分子島的高度會由一開始的 1 – 2 奈米增加為 2 – 3 奈米。這告訴我們,較密堆積的分子島於表面形成,因此由原子力探針所導致的形變或傾斜便不再明顯。最後,個別的分子島開始彼此癒合,降低樣品表面的分子島密度。藉由40 – 70 ℃ 的溫度將樣品作退火處理,以及把樣品放置在溶液中測試此分子薄膜的穩定性。經過退火處理後,表面的雙層分子結構島嶼 (bilayer islands) 的密度會減少;但是單層分子結構的島嶼不會。這是因為在不同介面的吸附力不同所導致:第一層的分子是利用化學鍵和氧化層鍵結;雙層分子中的上層分子及吸附在單層分子島上的雙層分子島是藉由物理吸附。我們也發現原本散亂分布在表面的單層分子島,在經過退火後,會出現沿著氧化條紋排列的現象。這是因為熱能促進了分子在表面的移動能力。在持續搖動的酒精溶液內,大部分的單層薄膜結構脫附但單層分子島只受到些微的影響,這代表著此兩種結構顯示截然不同的穩定性。然而在水溶液裡面,吸附在樣品表面的單層分子薄膜並不穩定,它們會在水溶液中持續的脫附。這脫附的行為,是由於分子尾端的厭水程度與前端之於氧化層親和力競爭後的結果。論文的最後,我們觀察到一個特殊的現象:表面吸附雙層分子島的樣品,經由退火處理後,會程現出由單層分子島所排列而成的封閉線圈圖案。這些線的高度主要分佈在 2 – 3 奈米間,平均寬度則在 50 – 90 奈米區間 (約為2 – 3 顆發生癒合前的分子島直徑)。
摘要(英) The formation of docosanoic acid (CH3(CH2)20COOH) self-assembled monolayers (SAMs) and their stability were investigated by atomic force microscopy (AFM). The growth begins with the formation of single-layer islands by exposing the sample to solution of docosanoic acid. In an initial growth stage, new islands form through nucleation and the island density increases. As adsorption continues, the heights of nucleated islands (single-layer islands) increase from 1 – 2 nm to 2 – 3 nm. This observation suggests that the densely packed islands form, so the deformation or tilting induced by AFM tip is not apparently. Finally, the individual islands coalesce decreasing the island density. We annealed the sample to the temperature ranging from 40 – 70 ℃ for varied times and placed the sample in solution to measure the stability of the docosanoic acid SAMs. In the annealing experiments, the density of bilayer islands decreased dramatically after the annealing, but the single-layer islands do not desorb. This difference is attributed to the different bonding strength at the interface: the first layer molecules are chemically bonded to the oxide; the upper layer in the bilayer islands and the bilayer islands adsorbed on the single islands are physically bonded to the lower molecular layer. The single-layer islands were randomly distributed on the surface at the beginning, and became aligned along the oxide strips after the annealing - the annealing facilitates the diffusion of the islands on the surface. In the agitated alcohol solution most single-layer films on the surface desorb but the single-layer islands are less affected, indicating disparate stabilities for these two structures. In addition, the docosanoic acid SAMs are not stable in water; they desorb continuously in water. We attribute this desorption kinetics to the competition of the hydrophobic interactions of tails and affinities between head groups and surface. Finally, we demonstrate an atypical behavior of this molecule: after annealing the bilayer islands, they formed great closed-loop lines consisting of single-layer islands. The height of these lines ranges primarily from 2 – 3 nm, and the average width is in the range of 50 – 90 nm, 2 – 3 times the diameter of a single-layer island prior to coalescence.
關鍵字(中) ★ 反射式高能電子繞射
★ 超高真空
★ 氧化鋁
★ 原子力顯微鏡
★ 自組裝分子膜
關鍵字(英) ★ Al2O3
★ AFM
★ SAMs
★ RHEED
★ UHV
論文目次 Chapter 1 Introduction 01
Chapter 1 Reference - 04
Chapter 2 Literature Survey 05
2.1 Aluminum Oxide Grown on NiAl( 100 ) - 05
2.1.1 NiAl Crystal --- 05
2.1.2 θ-Al2O3 Grown on NiAl(100) --- 07
2.2 Self-Assembly Monolayers ( SAMs ) ---- 13
2.2.1 Monolayers of Fatty (Carboxylic, n-Alkanoic) Acid --- 15
2.2.2 Monolayers of Alkyl Phosphate Acid ----- 23
Chapter 2 Reference - 29
Chapter 3 Experimental Apparatus and Procedure 31
3.1 Reflection High Energy Electron Diffraction ( RHEED ) and
Ultrahigh Vacuum ( UHV ) System ----- 31
3.1.1 Introduction of Vacuum - 32
3.1.2 Reflection High Energy Electron Diffraction ( RHEED ) ------ 34
3.1.3 Apparatus ------ 38
3.2 Atomic Force Microscopy (AFM) -- 39
3.2.1 Working Principle -------- 40
3.2.2 Operation Modes --------- 42
3.2.3 Apparatus ------ 45
3.3 Experimental Procedures ------- 50
3.3.1 Sample transferring ------ 50
3.3.2 Sample Cleaning ---------- 51
3.3.3 Oxygen Exposure --------- 52
3.3.4 Adsorption Process of Docosanoic Acid and AFM Measurement --- 53
Chapter 3 Reference - 55
Chapter 4 Results and Discussion 56
4.1 Self-Assembled Monolayer of Docosanoic Acid on θ-Al2O3/NiAl
(100) ----- 56
4.1.1 Docosanoic Acid Monolayer Film Formed on Al2O3 as a Function of
Docosanoic Acid Concentration. ----- 61
4.1.2 Docosanoic Acid Monolayer Film Formed on Al2O3 as a Function of
Adsorption Time ----- 64
4.2 Stability of the Docosanoic acid SAMs 68
4.2.1 Annealing in Ambient Condition -- 69
4.2.2 Thin Film Desorption by Agitated Alcohol - 74
4.2.3 Thin Film Desorption in Water ---- 76
4.3 An atypical Case 78
Chapter 4 Reference 84
Chapter 5 Concluison 85
參考文獻 Chapter 1 Reference
[1] C N. Suryawanshi, T. Kim, and C. T. Lin, Review of Scientific Instruments 81, 035105 (2010).
[2] C. A. Sizemore, M. L. Rechia, T. Kim, and C. T. Lin, Nanotech, 2005, 2, 339.
[3] C N. Suryawanshi, and C. T. Lin, Applied Materials and interfaces 1, 1334-1338, 2009.
[4] I. Doudevski, W. A. Hayes, and D. K. Schwartz, Phys. Rev. Lett., 1998, 81, 4927.
[5] I. Doudevski, and D. K. Schwartz, Phys. Rev. B, 1999, 60, 14.
[6] I. Doudevski, and D. K. Schwartz, J. Am. Chem. Soc., 2001, 123, 6867-6872.
[7] M F Luo, C I Chiang, H W Shiu, S D Sartale and C C Kuo, Nanotechnology, 17 (2006) 360-366.
Chapter 2 Reference
[1] M. Baumer, H.j. Freund, Prog. Surf. Sci. 61 (1999) 127.
[2] R.M. Jaeger, K. Kuhlenbeck, H.J. Freund, M. Wutting, W. Hoffmann, R. Franchy, H. Ibach, Surf. Sci. 259 (1991) 235.
[3] P. Gassmann, R. Franchy, H. Ibach, J. Electron Spectrosc. Relat. Phenom. 64-65 (1993) 315.
[4] P. Gassmann, R. Franchy, H Ibach, Surf. Sci. 319 (1994) 95.
[5] R. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396 (1998) 176.
[6] J. Mendez, H. Niehus, Appl. Surf. Sci. 142 (1999) 152.
[7] N. Fremy, V. Maurice, P. Marcus, J. Am. Ceram. Soc. 86 (2003) 669.
[8] N. Fremy, V. Maurice, P. Marcus, Surf. Interf. Anal. 34 (2002) 519.
[9] W.C. Lin, C.C. Kuo, M.F. Luo, K.J. Song, M.T. Lin, Appl. Phys. Lett. 86 (2005) 043105.
[10] M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, C.C. Kuo, Nanotechnology 17 (2006) 360.
[11] Ch. ToElkes, R. Struck, R. David, P. Zeppenfeld, G. Comsa,
Phys. Rev. Lett. 80 (1998) 2877.
[12] D.B. Miracle, Acta Metall. Mater. 41 (1993) 649.
[13] R. Franchy, Surface Science Reports 38 (2000) 195-294.
[14] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006) 1942-1951.
[15] Ralf-Peter Blum, Dirk Ahlbehrendt, Horst Niehus, Surface Science 396 (1998) 176-188.
[16] H.L. Davis, J. Noonan, Phys. Rev. Lett. 54 (1985) 566.
[17] Love et al., Chem. Rev. 2005, 105, 1103-1169.
[18] Abraham Ulman, Chem. Rev. 1996, 96, 1533-1554.
[19] R.K. Smith et al., Progress in Surface Science 75 (2004) 1–68.
[20] Allara, D. L.; Nuzzo, R. G. Langmuir 1985, 1, 45.
[21] Allara, D. L.; Nuzzo, R. G. Langmuir 1985, 1, 52.
[22] Yu-Tai Tao, J. Am. Chem. SOC., 1993, 115, 4350-4358.
[23] C. E. Taylor, and D. K. Schwartz, Langmuir, 2003, 19, 2665-2672.
[24] M. S. Lim, K. Feng, X. Chen, N. Wu, A. Raman, J. Nightingale,
E. S. Gawalt, D. Korakakis, L. A. Hornak, and A. T. Timperman,
Langmuir, 2007, 23, 2444-2452.
[25] I. Doudevski, W. A. Hayes, and D. K. Schwartz, Phys. Rev. Lett., 1998, 81, 4927.
[26] I. Doudevski, and D. K. Schwartz, Phys. Rev. B, 1999, 60, 14.
[27] I. Doudevski, and D. K. Schwartz, J. Am. Chem. Soc., 2001, 123, 6867-6872.
[28] C. Messerschmidt, and D. K. Schwartz, Langmuir, 2001, 17, 462-467.
[29] P. Thissen, M. Valtiner, and G. Grundmeier, Langmuir, 2010, 26 (1), 156–164.
Chapter 3 Reference
[1] Peter J. Dobson, An Introduction to Reflection High Energy Electron Diffraction.
[2] Ellaine M. McCash, Surface Chemistry.
[3] John B. Hudson, Surface Science: An Introduction.
[4] 行政院國家科學委員會精密儀器發展中心, 真空技術與應用.
[5] R. Franchy, Surface Science Reports 38 (2000) 195-294.
[6] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006) 1942-1951.
[7] JPK Instruments AG, NanoWizard○R AFM Handbook (2009).
[8] Budget Sensors, Product Catalogue (2009).
Chapter 4 Reference
[1] Allara, D. L.; Nuzzo, R. G., Langmuir 1985, 1, 45.
[2] Guo-Rue Hu, Chen-Sheng Chao, Hong-Wan Shiu, Cheng-Ting Wang, Won-Ru Lin, Yao-Jane Hsu and Meng-Fan Luo, Phys. Chem. Chem. Phys., 2011, 13, 3281-3290.
[3] I. Doudevski, W. A. Hayes, and D. K. Schwartz, Phys. Rev. Lett., 1998, 81, 4927.
[4] I. Doudevski, and D. K. Schwartz, J. Am. Chem. Soc. 2001, 123, 6867-6872.
[5] M F Luo, C I Chiang, H W Shiu, S D Sartale and C C Kuo, Nanotechnology, 17 (2006) 360-366.
[6] Song Xu, Sylvain J. N. Cruchon-Dupeyrat, Jayne C. Garno, Gang-Yu Liu, G. Kane Jennings, Tseh-Hwan Yong, and Paul E. Laibinis, J. Chem. Phys., 1998, 108, 5002.
[7] M. S. Lim, K. Feng, X. Chen, N. Wu, A. Raman, J. Nightingale,
E. S. Gawalt, D. Korakakis, L. A. Hornak, and A. T. Timperman,
Langmuir 2007, 23, 2444-2452.
[8] P. Thissen, M. Valtiner, and G. Grundmeier, Langmuir 2010, 26 (1), 156–164.
指導教授 羅夢凡(Meng-fan Luo) 審核日期 2011-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明