博碩士論文 982212001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.16.51.137
姓名 蔡宛宸(Wan-cheng Tsai)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 微晶矽薄膜太陽能電池之元件模擬與分析
(Device Modeling and Analysis of Microcrystalline SiliconThin Film Solar Cells)
相關論文
★ 類磊晶薄膜成長與調控並利用於太陽能電池之研究★ 矽基鍺薄膜光偵測器之研究
★ 低溫製備矽基鍺磊晶薄膜及矽基鍺緩衝層砷化鎵薄膜之研究★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究
★ 導波共振光學元件應用於生物感測器之研究★ 具平坦化側帶之超窄帶波導模態共振濾波器研究
★ 低溫成長鍺薄膜於單晶矽基板上之研究★ 矽鍺薄膜及其應用於光偵測器之研製
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 極化繞射光學元件在高密度光學讀取頭上之應用研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年來,各種物理特性對矽基薄膜太陽能電池所產生的影響引起廣泛的研究,尤其在非晶矽與微晶矽薄膜太陽能電池也有著相當多的研究結果。在本論文中,我們利用二維模擬軟體Silvaco TCAD集中於探討各種不同結構參數對於非晶矽與微晶矽薄膜太陽能電池在光電特性上的影響。
首先,我們建立一非晶矽薄膜太陽能電池,其結構為a-SiC:H/a-Si:H/a-Si:H,並針對各種不同參數作特性表現探討,其中參數包含厚度、參雜濃度、以及能態密度。從研究結果中可以發現,當p/i/n厚度依序為40/300/10 (nm) 及參雜濃度為1×1018/1×1017/1×1020 (cm-3) 時為非晶矽薄膜太陽能電池最佳化後的結構參數,其效率可高達9.92%。除此之外,從本質層(吸收層)厚度與懸浮鍵能態密度的關係結果中我們可以做出以下結論:對於一個品質較差(懸浮鍵能態密度較高)的樣品,若其本質層厚度越厚,則光衰退的影響會更趨明顯與嚴重;換言之,我們可利用較薄的本質層來達到更好的電性。
微晶矽薄膜是一種很複雜的材料,由許多小於20-30 nm的結晶粒存在於充滿間隙或缺陷的非晶矽本體所組成。因此,我們建立了一個微晶矽的結構結合可調變結晶度的模型,其中以柱狀形晶粒為考量,並加入晶粒邊界概念於結晶矽與非晶矽的陣列中。我們利用以下的方法來實現一個可調變結晶度(Xc)的微晶矽薄膜太陽電池:以非晶矽塊材放置於一顆晶粒中間;此晶粒的材料參數則與結晶矽材相似。另外,我們再以兩塊具有嚴重缺陷且與非晶矽的材料參數相似之區塊嵌入非晶矽與結晶矽之間做為晶粒邊界以提供更完整的考量。
我們對於微晶矽薄膜太陽能電池電特性表現的討論參數包括:不同的本質層厚度、晶粒大小、結晶度、以及非晶矽區塊中懸浮鍵能態密度都在本論文中討論。根據模擬結果可發現,一個晶粒大小為20 nm、本質層厚度為4 µm的微晶矽薄膜太陽電池,其高結晶度樣本(Xc=90 %)的效率可達到9.02 %;而低結晶度樣本(Xc=10 %)也可達7.55 %。然而,當晶粒大小大於30 nm則具有更好的電性表現,如此的現象是由於當晶粒大小為30 nm時,可視為微晶矽結構轉變成多晶矽結構的臨界點。除此之外,從外部量子效率結果中可發現微晶矽材料所產生的光衰退效應只發生在短波長(400-700 nm)的範圍,換言之則是非晶矽材料對光子具高吸收率的範圍。因此我們可以做出以下結論:對一個低結晶度的微晶矽本質層而言,非晶矽材料是造成微晶矽薄膜太陽能電池中光衰退效應(高能態密度)的主要原因。
摘要(英) Currently, the effects of physical properties on silicon-based thin film solar cells have been extensively researched as well as numerous investigation results have yielded a considerable amount of information about hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (µc-Si:H) solar cells. In this thesis, we focus on the electrical performances of several structural parameters and two-dimensional device modeling for two types p-i-n thin film solar cells which utilize a-Si:H and µc-Si:H as the material of i-layer (i.e. active layer) are carried out by using Silvaco TCAD simulation program.
First, we demonstrate a a-SiC:H/a-Si:H/a-Si:H thin film solar cell. Some characteristic behaviors are influenced by various parameters, such as the thicknesses, the doping concentration, and the density of states. The optimal efficiency of 9.92% is achieved with thickness of 40/300/10 (nm) and doping concentration of 1×1018/1×1017/1×1020 (cm-3). Nevertheless, from the results of the cells with different i-layer thickness and density of dangling bond states, we can conclude that the defect density is thickness dependent in poor quality samples. The light-induced degradation effect occurs more obviously in the thick samples. As a result, using a cell with thinner active layer thickness will yield better performance with poor quality materials.
µc-Si:H is a complex material composed of microcrystal grains in an amorphous matrix plus voids/cracks with crystal grain sizes smaller than 20-30 nm. A modulated crystalline volume fraction model in µc-Si:H thin film solar cells is established by consideration of the columnar crystal growth, which can be regarded as an array of crystalline and amorphous silicon regions with grain boundaries between them. The approach of utilizing two defective a-Si:H-like material as a columnar grain boundaries and an a-Si:H region which are inserted into the middle of the crystalline-like (namely, highly crystallized µc-Si:H) active layer is realized in order to demonstrate crystalline volume fraction (Xc) in a more realistic and complete way. The electrical properties of microcrystalline silicon solar cells with different i-layer thickness, grain size, crystalline volume fraction (Xc), and density of dangling bond states are presented. According to the simulation results, the efficiency of high and low Xc samples is 9.02 % and 7.55 % with small grain size (=20 nm) when i-layer thickness is 4 µm, respectively. However, the samples with larger grain size (>30 nm) exhibits better performance is due to the fact that it is a critical point for microcrystalline silicon transits to polycrystalline silicon with grain size equals to 30 nm, which. Nevertheless, the higher the density of states and Xc of intrinsic layer is, the less light-induced degradation produced by a-Si:H in solar cell. Some external quantum efficiency results are also presented and indicates that the light-induced degradation effect only occurred in the short wavelength range which corresponds to a-Si:H absorption spectrum and we can further conclude that a-Si:H fraction in µc-Si:H is responsible for this effect.
關鍵字(中) ★ 非晶矽
★ 太陽能電池模擬
★ 微晶矽
關鍵字(英) ★ amorphous silicon
★ microcrystalline silicon
★ silvaco ATLAS
★ solar cell
論文目次 中文摘要 i
ABSTRACT iii
ACKOWLEDGMENT v
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xii
Chapter 1 INTRODUCTION 1
1.1 Background 1
1.2 Objective and Approach 1
1.3 Thesis Organization 3
Chapter 2 PHOTOVOLTAICS REVIEW 5
2.1 Solar Cells 5
2.1.1 Solar cell operations 5
2.1.2 Solar cell performance 6
2.2 Hydrogenated Amorphous Silicon Solar Cells 8
2.2.1 Material properties 8
2.2.2 Defects in amorphous materials 9
2.3 Microcrystalline Silicon Solar Cells 10
2.3.1 Material properties 11
2.3.2 Grain size and grain boundary 12
2.3.3 Crystalline volume fraction, Xc 13
2.4 Generation and Recombination 14
2.4.1 Photogeneration 14
2.4.2 Recombination 15
2.5 Quantum Efficiency 16
Chapter 3 DEVICE SIMULATION METHOD 18
3.1 General Considerations for Device Modeling 18
3.2 Physics 19
3.3 Structure and Material Specification 20
3.4 Defects Implementation 22
3.5 The Physical Models 23
3.6 Luminous 24
3.6.1 Optical absorption coefficient 24
3.6.2 Beam 25
3.6.3 Light propagation models 26
3.7 Numerical Methods 26
Chapter 4 SIMULATION RESULTS of amorphous silicon SOLAR CELLS 27
4.1 Hydrogenated Amorphous Silicon Solar Cells 27
4.2 Simulation Model and Baseline 28
4.3 Layer Thickness Dependent on Device Performance 31
4.4 Doping Concentration Dependent on Device Performance 34
4.5 Effects of Dangling Bond Density 38
Chapter 5 SIMULATION RESULTS of Microcrystalline Silicon Solar Cells 43
5.1 Simulation Model and Baseline 43
5.2 The Considerations of Crystalline Volume Fraction 46
5.3 Grain Size Dependent on Device Performance 46
5.4 Layer Thickness Dependent on Device Performance 50
5.5 Effects of Crystalline Volume Fraction 51
5.6 Effects of Dangling Bond Density 55
Chapter 6 CONCLUSIONS 57
REFERENCE 60
參考文獻 [1] A. Catalano, R. D’Aiello, J. Dresner, et al., “Attainment of 10% Conversion Efficiency in Amorphous Silicon Solar Cells,” Proceedings of the 16th IEEE Photovoltaic Specialists Conference, San Diego, 1421–1422, 1982.
[2] Lund CP, Luczak K, et al., “Field and Laboratory Studies of the Stability of Amorphous Silicon Solar Cells and Modules,” Renewable Energy, Vol. 22, pp. 287–94, 2001.
[3] N. Hernandez-Como, A. Morales-Acevedo, “Simulation of hetero-junction silicon solar cells with AMPS-1D,” Solar Energy Materials & Solar Cells, Vol. 94, pp. 62–67, 2010.
[4] I.A. Yunaz, S. Kasashima, el at., “Effect of Light Intensity on Performance of Silicon-Based Thin Film Solar Cells,” Photovoltaic Specialists Conference on 34th IEEE, pp. 000153-000157, 2009.
[5] A. Fantoni, M. Vieira, R. Martins, “Simulation of Hydrogenated Amorphous and Microcrystalline Silicon Optoelectronic Devices,” Mathematics and Computers in Simulation, Vol. 49, pp. 381–401, 1999.
[6] A. Eray, and G. Nobile, “AMPS-1D Modeling of a-Si:H n+-i-n+ Structure: the Validity of Space Charge Limited Current Analysis,” Turk. J. Physics, Vol. 28, pp.31-39, 2004.
[7] K. M. Walsh, “A New Approach to the Effective Use of Intrinsic a-Si :H in Thin film Solar Cells,” Journal of Physics D: Applied Physics, Vol. 40, pp. 1007–1009, 2007.
[8] A.V. Shah, J. Meier, et al., “Material and solar cell research in microcrystalline silicon,” Solar Energy Materials & Solar Cells, Vol. 78, pp. 469–491, 2003.
[9] B. Zebentout, Z. Benamara, et al., “Dependence of Photovoltaic Parameters on Grain Size and Density of States in n+-i-p+ and p+-i-n+ Polycrystalline Silicon Solar Cells,” Thin Solid Films, Vol. 516, pp. 84–90, 2007.
[10] A. Fantoni, M. Vieira, and R. Martins, “Transport properties in microcrystalline silicon solar cells under AM1.5 illumination analysed by two-dimensional numerical simulation,” Solid-State Electronics, Vol. 43, pp. 1709-1714, 1999.
[11] H. Takakura and Y. Hamakawa, “Device simulation and modeling of microcrystalline silicon solar cells,” Solar Energy Materials & Solar Cells, Vol. 74, pp. 479–487, 2002.
[12] M. Nath, S. Chakraborty, et al., “Performance of microcrystalline silicon single and double junction solar cells of different degrees of crystalllinity,” Solar Energy Materials & Solar Cells, Vol. 94, pp. 1477–1480, 2010.
[13] C. Lee, H. Efstathiadis, et al., “Two-dimensional computer modeling of single junction a-Si:H solar cells,” Photovoltaic Specialists Conference on 34th IEEE, pp. 001118 - 001122, 2009.
[14] M. Tang, S. T. Chang, et al., “Simulation of nanorod structures for an amorphous silicon-based solar cell,” Thin Solid Films, Vol. 518, pp. S259–S261, 2010.
[15] Jenny Nelson, The Physics of Solar Cells, Imperial College Press, UK, 2003
[16] S.T. Chang, M. Tang, R.Y. He, W.-C. Wang, Z. Pei, and C.-Y. Kung, “TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline silicon/hydrogenated amorphous silicon-germanium PIN solar cells,” Thin Solid Films, Vol. 518, pp. 250–254, 2010.
[17] Y. Wang, X. Han, et al., “Light induced degradation of microcrystalline silicon solar cells,” Journal of Non-Crystalline Solids, Vol. 352, pp. 1909–1912, 2006.
[18] S. Veprek, V. Marecek, J.A. Anna Selvan, “The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport,” Solid State Electronics, Vol. 11, pp. 683–684, 1968.1
[19] R. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology, Kluwer Academic Publishers, 1998.
[20] A. V. Shah, H. Schade, and M. Vanecek, et al., “Thin-film Silicon Solar Cell Technology,” Progress In Photovoltaics: Research And Applications, Vol. 12, pp. 113-142, 2004.
[21] S. Tripathi, N. Venkataramani, et al., “One-dimensional simulation study of microcrystalline silicon thin films for solar cell and thin film transistor applications using AMPS-1D,” Thin Solid Films, Vol. 501, pp. 295-298, 2006.
[22] SILVACO, Inc., “ATLAS User's Manual,” Silvaco Inc., Santa Clara, CA, 2010.
[23] A.J. Letha, H. L. Hwang, “Two-dimensional modeling and simulation of hydrogenated amorphous silicon p-n-n solar cell,” Journal of Non-Crystalline Solids, Vol. 355, pp. 148–153, 2009.
[24] R.A. Street, Hydrogenated Amorphous Silicon, Cambridge University, UK, 1991.
[25] M. Goerlitzer, Ph.D Thesis, Universite de Neuchatel, 1998, ISBN 2-9700197–0–1.
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2011-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明