博碩士論文 982205005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:133 、訪客IP:3.133.135.247
姓名 蘇岏智(WanJ-Jr Su)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 串聯系統存在隱蔽資料之可靠度分析─以廣義伽瑪分配為例
(The relibility analysis of series system with masked data dash generalized gamma distribution)
相關論文
★ 具Box-Cox轉換之逐步加速壽命實驗的指數推論模型★ 多元反應變數長期資料之多變量線性混合模型
★ 多重型 I 設限下串聯系統之可靠度分析與最佳化設計★ 應用累積暴露模式至單調過程之加速衰變模型
★ 串聯系統加速壽命試驗之最佳樣本數配置★ 破壞性加速衰變試驗之適合度檢定
★ 串聯系統加速壽命試驗之最佳妥協設計★ 加速破壞性衰變模型之貝氏適合度檢定
★ 加速破壞性衰變模型之最佳實驗配置★ 累積暴露模式之單調加速衰變試驗
★ 具ED過程之兩因子加速衰退試驗建模研究★ 逆高斯過程之完整貝氏衰變分析
★ 加速不變原則之偏斜-t過程★ 花蓮地區地震資料改變點之貝氏模型選擇
★ 颱風降雨量之統計迴歸預測★ 花蓮地區地震資料之長時期相關性及時間-空間模型之可行性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在串聯系統中,當任一物件失效即導致系統停止運作,但有時某些因素導致引發系統失效之物件無從觀測,亦即資料為隱蔽資料。本文討論在不同隱蔽水準時,物件壽命分別具有韋伯分配與廣義伽瑪分配的可靠度之試驗。我們以期望值最大化演算法求得模型中參數之最大概似估計和以無母數拔靴法估計參數、可靠度和壽命的標準誤;並在主觀先驗分佈下由馬可夫鍊蒙地卡羅方法得貝氏估計,同時比較兩種方法在物件與系統之平均壽命及可靠度函數之統計推論。並以傳統的概似比檢定、AIC 和 BIC 方法與貝氏選模中常用的 DIC 和貝氏因子法則探討資料配適廣義伽瑪分配與韋柏分配的模型選擇問題。模擬結果顯示,當樣本資訊不足時,貝氏分析所得結果優於最大概似方法。
摘要(英) In this thesis, we consider a system of independent and non-identical components connected in series, each component having a Weibull life time distribution under Type-I censored. In a series system, the system fails if any of the components fails, and it may only be ascertained that the cause of system failure is due to one of the components in some subset of system components, so called masked data. The maximum likelihood estimates via EM algorithm is developed for the model parameters with the aid of nonparametric bootstrap method to estimate the resulting standard errors of the MLE when the data are masked. Subjective Bayesian inference incorporated with the Markov chain Monte Carlo method is also addressed. Simulation study shows that the Bayesian analysis provides better results than the maximum likelihood approach not only in parameters estimation but also in reliability inference for both the system and components. We also discuss model fitting issue regarding the generalized gamma distribution and Weibull distribution via different model selection criteria.
關鍵字(中) ★ 廣義伽瑪分配
★ 貝氏因子
★ 期望值-最大化演算法
★ 馬卡夫鏈蒙地卡羅演算法
★ 隱蔽資料
關鍵字(英) ★ Markov chain Monte Carlo
★ EM algorithm
★ bayesian factor
★ DIC
★ masked data
★ generalized gamma
論文目次 摘要i
Abstract ii
誌謝iii
目錄iv
圖目次vi
表目次vii
第一章緒論1
1.1 研究動機. . . . . . . . . . . . . . . . 1
1.2 研究背景. . . . . . . . . . . . . . . . 3
1.3 研究方法. . . . . . . . . . . . . . . . 4
第二章物件壽命具韋伯分配之串聯系統的壽命試驗6
2.1 模型介紹. . . . . . . . . . . . . . . . 6
2.2 最大概似估計. . . . . . . . . . . . . . 8
2.3 貝氏推論. . . . . . . . . . . . . . . . 13
第三章物件壽命具廣義伽瑪分配之串聯系統的壽命試驗20
3.1 模型介紹與最大概似估計. . . . . . . . . 20
3.2 概似比檢定. . . . . . . . . . . . . . . 23
3.3 貝氏推論. . . . . . . . . . . . . . . . 24
3.4 貝氏模型選擇. . . . . . . . . . . . . . 26
第四章數值分析與模擬研究29
4.1 壽命具韋伯分配之串聯系統模型. . . . . . 29
4.2 壽命具廣義伽瑪分配之串聯系統模型. . . . 33
4.3 模型選擇. . . . . . . . . . . . . . . . 36
第五章結論與展望49
參考文獻50
參考文獻 [1] Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Reliab. , 19, 716-723.
[2] Ashkar, F., Bobee, B., Leroux, D. and Morisette. D. (1988). The generalized method of moments as applied to the generalized gamma distribution. Stochastic Hydrology and Hydraulics, 2, 161-174.
[3] Basu S., Basu, A. P., and Mukhopadhyay, C. (1999). Bayesian analysis for masked system failure data using nonidentical weibull models. J. Statist. Plann. Inference, 78, 255–275.
[4] Basu, S., Sen, A. and Banerjee, M. (2003). Bayesian analysis of competing risks with partially masked cause of failure. Appl. Statist., 52, 77–93.
[5] Berger, J. O. and Sun, D. (1993). Bayesian analysis for the Poly-Weibull distribution. J. Amer. Statist. Assoc., 88, 1412–1418.
[6] Cox, C., Chu H., Schneider, M. F. and Munoz, A. (2007). Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Statistics in medicine, 26, 4352-4374.
[7] Edwin, M. M., Heleno, B. and Gilberto, A. P. (2003). Influence diagnostics in generalized log-gamma regression models. Computational Statistics and Data Analysis, 42, 165-186.
[8] Edwin, M. M., Vicente, G. and Gilberto, A. (2009). Generalized log-gamma regression models with cure fraction. Lifetime Data Analysis, 15, 79-106.
[9] Efron, B. (1979). Bootstrap method:another look at the jacknife. Annals of Statist., 17, 1–26.
[10] Gomes, O., Combesv, C. and Dussauchoy, A. (2008). Parameter estimation of the generalized gamma distribution. Mathematics and Computers in Simulation, 79, 955-963.
[11] Guttman, I., Lin, D. K. J., Reiser, B. and Usher, J. S. (1995). Dependent Masking and System Life Data Analysis: Bayesian Inference for Two-Component Systems. Lifetime Data Analysis, 1, 87-100.
[12] Jan, M. and Van Noortwijk. (2004). Bayes Estimates of Flood Quantiles using the Generalised Gamma Distribution . System and Bayesian Reliability, 351-374.
[13] Lawless, J. F. (1980). Inference in the Generalized Gamma and Log Gamma Distributions. American Statistical Association and American Society for Quality., 22,409-419.
[14] Lin, D. K. J., Usher, J. S. and Guess, F. M. (1996). Bayes estimation of componentreliability from masked system-life data. IEEE Trans. Reliab., 45, 233–237.
[15] Matz, H. F. and Waller, R. A. (1982), Bayesian Relibility Analysis. New York: John Wiley.
[16] Miyakawa, M. (1984). Analysis of incomplete data in competing risks model. IEEE Trans. Reliab., 33, 293–296.
[17] Mukhopadhyay, C. and Basu, A. P. (1993). Bayesian analysis of competing risks: k independent exponentials. Technical report No.516, Department of Statistics, The Ohio
State University.
[18] Newton, M. A. and Raftery, A. E. (1994). Approximate Bayesian inference with the
weighted likelihood bootstrap. Journal of the Royal Statistical Society Series., 56, 3-48.
[19] Pascoa, M. A. R., Ortega, E. M. M.,Cordeiro, G. M. and Paranaiba, P. F.(2011). The Kumaraswamy generalized gamma distribution with application in survival analysis.
Available online 13 April 2011.
[20] Reiser, B., Guttman, I., Lin, D. K. J., Usher, J. S. and Guess, F. M. (1995). Bayesian inference for masked system lifetime data. Appl. Statist., 44, 79–90.
[21] Saralees, N. and Gupta. A. K. (2007). A generalized gamma distribution with application to drought data. Mathematics and Computers in Simulation, 74, 1-7.
[22] Sarhan, A. M. (2001). Reliability estimation of components from masked system life data. Reliability Engineering and System Safety, 74, 107–113.
[23] Sathit, I. and Nopparat S. (2009). Speckle Filtering by Generalized Gamma Distribution. NCM '09 Proceedings of the 2009 Fifth International Joint Conference on INC, IMS and IDC., 1335-1338.
[24] Spiegelhalter, D. J. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B, 64, 583V639.
[25] Stacy, E. W. (1963). A Generalization of the Gamma Distribution. Ann. Math. Statist., 33, 1187-1192.
[26] Usher, J. S. and Hodgson, T. J. (1988). Maximum likelihood analysis of component reliability using masked system life-test data. IEEE Trans. Reliab., 37, 550–555.
[27] Xie X. and Liu. X. (2009). Analytical three-moment autoconversion parameterization based on generalized gamma distribution. JOURNAL OF GEOPHYSICAL RE-SEARCH, 114, D17201, doi:10.1029/2008JD011633.
指導教授 樊采虹(Tsai-hung Fan) 審核日期 2011-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明