參考文獻 |
[1] J. B. Bell, P. Colella, and H. M. Glaz, A second order projection method for the incompressible Navier-Stokes equations, Journal of Computational Physics, 85 (1989), pp. 257-283.
[2] O. Botella and R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Computers & Fluids, 27 (1998), pp. 421-433.
[3] D. L. Brown, R. Cortez, and M. L. Minion, Accurate projection methods for the incompressible Navier-Stokes Equations, Journal of Computational Physics, 168 (2001), pp. 464-499.
[4] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation, 22 (1968), pp. 745-762.
[5] A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Mathematics of Computation, 23 (1969), pp. 341-353.
[6] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer, New York, 1997.
[7] J. Donea and A. Huerta, Finite Element Methods for Flow Problems, Wiley, England, 2003.
[8] W. E and J.-G. Liu, Projection method I: convergence and numerical boundary layers, SIAM Journal on Numerical Analysis, 32 (1995), pp. 1017-1057.
[9] W. E and J.-G. Liu, Projection method III: spatial discretization on the staggered grid, Mathematics of Computation, 71 (2002), pp. 27-47.
[10] W. E and J.-G. Liu, Gauge method for viscous incompressible flows, Communications in Mathematical Sciences, 1 (2003), pp. 317-332.
[11] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Oxford University Press, New York, 2005.
[12] M. F. Fourni’e and A. Rigal, High order compact schemes in projection methods for incompressible viscous flows, Communications in Computational Physics, 9 (2011), pp. 994-1019.
[13] U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, 48 (1982), pp. 387-411.
[14] K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, Journal of Computational Physics, 30 (1979), pp. 76-95.
[15] B. E. Griffith, An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner, Journal of Computational Physics, 228 (2009), pp. 7565-7595.
[16] J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, 195 (2006), pp. 6011-6045.
[17] W. D. Henshaw, A fourth-order accurate method for the incompressible Navier-Stokes equations on overlapping grid, Journal of Computational Physics, 113 (1994), pp. 13-25.
[18] P.-W. Hsieh, S.-Y. Yang, and C.-S. You, A new high-accuracy compact difference scheme for reaction-convection-diffusion problems with a small diffusivity, submitted for publication, 2011.
[19] J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, Journal of Computational Physics, 59 (1985), pp. 308-323.
[20] M. Li and T. Tang, A compact fourth-order finite difference scheme for unsteady viscous incompressible flows, Journal of Scientific Computing, 6 (2001), pp. 29-45.
[21] J.-G. Liu, J. Liu and R. L. Pego, Stable and accurate pressure approximation for unsteady incompressible viscous flow, Journal of Computational Physics, 229 (2010), pp. 3428-3453.
[22] L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations, Birkh‥auser, 1993.
[23] W. F. Spotz, High-Order Compact Finite Difference Schemes for Computational Mechanics, Ph.D. Dissertation, the University of Texas at Austin, December 1995.
[24] R. Temam, Sur l’approximation de la solution des ’equations de Navier-Stokes par la m’ethode des pas fractionnaires ii, Archive for Rational Mechanics and Analysis, 33 (1969), pp. 377-385.
[25] J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM Journal on Scientific Computing, 7 (1986), pp. 870-891.
[26] Z. Zheng and L.Petzold, Runge-Kutta-Chebyshev projection method, Journal of Computational Physics, 219 (2006), pp. 976-991.
|