博碩士論文 985203011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.143.22.23
姓名 左仕沛(Shih-pei Zuo)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於編碼增益下H.264解碼器移動補償之複雜度控制
(Coding-Gain-Based Complexity Control for Motion Compensation in H.264 Video Decoding)
相關論文
★ 基於區域權重之衛星影像超解析技術★ 延伸曝光曲線線性特性之調適性高動態範圍影像融合演算法
★ 實現於RISC架構之H.264視訊編碼複雜度控制★ 基於卷積遞迴神經網路之構音異常評估技術
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 基於時序卷積網路之單FMCW雷達應用於非接觸式即時生命特徵監控
★ 視訊隨選網路上的視訊訊務描述與管理★ 基於線性預測編碼及音框基頻週期同步之高品質語音變換技術
★ 基於藉語音再取樣萃取共振峰變化之聲調調整技術★ 即時細緻可調性視訊在無線區域網路下之傳輸效率最佳化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 視訊壓縮編碼與網路的蓬勃發展促成了多樣化的多媒體應用,如錄影與視訊會議。即時視訊編解碼應用在行動裝置上也已經相當地普遍。最新的視訊壓縮標準H.264提供了許多編碼工具來達到高編碼效率,相對在編解碼端也增加較高的運算複雜度。然而在行動裝置上即時視訊解碼運算複雜度是有限的,因此控制解碼器的運算複雜度使其低於複雜度限制並且維持最佳位元率-失真效能是非常重要的課題。
本論文針對H.264解碼器之移動補償運算,提出一個利用編碼增益階層(Coding-gain-based layer, CGL)複雜度控制機制來控制解碼器複雜度。實驗結果顯示,一般影像採用所提出之編碼增益階層三(CGL-3)進行編碼所產生之串流,最高可節省達37%之解碼時間且PSNR只稍降0.44dB。而本機制也可以針對解碼器不同複雜度的限制下,提供相符之編碼串流來進行即時解碼,利用此機制產生之串流所需解碼複雜度和實際上相比,平均誤差僅為2.43 %,亦即在可接受之視訊品質需求且解碼器複雜度有限狀況下,本研究所提之複雜度控制機制可以有效的控制解碼端的複雜度,達到複雜度控制之目的。
摘要(英) Video Applications in mobile devices become more and more popular. The latest video compression standard H.264/AVC provides various coding tools to achieve high coding efficiency at the expense of high computational complexity. Because the computation capability of a mobile device is generally constrained, the full-scale H.264 video decoding may be not allowed for a mobile device. Therefore, a complexity control mechanism which adjusts the complexity of video coding computational complexity and maintains the Rate-Distortion (RD) performance is important.
Most studies on complexity control focus on the encoding side. However, we propose a complexity control mechanism for video decoders because decoders are more popularly used. Motion compensation (MC) is the most complexity-consuming operation in H.264 video decoding, the complexity control of MC is critical and the first one to be considered in our work. This research proposes a Coding-Gain-Based layer (CGL) mechanism which controls MC complexity of the decoder by controlling allowable search point locations and partition modes in the encoder. The computational overhead of the proposed mechanism is totally just in the encoder. The simulation results show that the proposed mechanism can reduce decoding time up to 37% with less than 0.44 dB video quality degradation compared with no complexity constrained case. It can efficiently control the decoding complexity with only 2.43% error rate on average.
關鍵字(中) ★ 視訊壓縮
★ 複雜度控制
★ 移動補償
★ 編碼增益
關鍵字(英) ★ video coding
★ complexity control
★ motion compensation
★ coding gain
論文目次 摘 要 I
Abstract II
致 謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文架構 4
第二章 H.264視訊編解碼器介紹 5
2.1 H.264 視訊壓縮標準簡介 5
2.2 H.264編碼器架構介紹 7
2.2.1 畫面內預測(Intra Prediction) 8
2.2.2 畫面間預測(Inter Prediction) 9
2.2.3 轉換(Transform) 11
2.2.4 量化(Quantization) 11
2.2.5 去方塊濾波器(Deblocking Filter) 11
2.2.6 熵編碼(Entropy Coding) 12
2.3 H.264解碼器架構介紹 13
第三章 複雜度控制相關研究介紹 15
3.1 本研究相關之編碼運算介紹 15
3.1.1 區塊模式決策之最佳模式選擇 16
3.1.2 半像素點移動向量內插演算法介紹 18
3.2 複雜度控制相關文獻介紹 24
3.3 本論文研究與現有研究文獻之差異 32
第四章 提出之解碼器複雜度控制機制 33
4.1 子像素點複雜度分析 33
4.2 複雜度分層控制機制 38
4.3 編碼增益階層效能分析 40
4.4 利用編碼增益階層之複雜度控制機制 50
第五章 實驗結果與分析討論 56
5.1 實驗參數與模擬環境 56
5.2 編碼增益分層之結果分析 57
5.3 利用編碼增益階層複雜度控制機制之結果分析 65
5.4 相關研究和編碼增益分層複雜度控制之結果比較及分析 69
第六章 結論與未來展望 76
參考文獻 77
參考文獻 [1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol.13, no.7, pp.560-576, July. 2003.
[2] M. Horowitz, A. Joch, F. Kossentini and A. Hallapuro, “H.264/AVC baseline profile decoder complexity analysis,” IEEE Transactions. Circuits Systems for Video Technology, vol. 13, no. 7, pp.704-716, July 2003.
[3] Q. Xe, J. Liu, S. Wang, and J. Zhao, “H.264/AVC baseline profile decoder optimization on independent platform,” 2005 International Conference on Wireless Communications, Networking and Mobile Computing, vol. 2, pp. 1253 – 1256, Sep. 2005.
[4] M. C. Chien, Z. Y. Chen, and P. C. Chang, “Coding-gain-based complexity control for H.264 video encoder,” 15th IEEE International Conference on Image Processing, vol., no., pp.2136-2139, 12-15 Oct. 2008.
[5] Y. Wang and S. F. Chang, “Motion estimation and mode decision for low-complexity h.264 decoder,” Tech. Rep. 210-2005-4, Columbia University DVMM Group, 2005.
[6] Y. Wang and S. F. Chang, “Complexity adaptive H.264 encoding for light weight stream,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. II25–II28 , May 2006.
[7] Z. B. Chen, P. Zhou, and Y. He, “Fast integer pel and fractional pel motion estimation for jvt,” in JVT of ISO/IEC MPEG and ITU-T VCEG, JVT-F017, Awaji, Japan, 5-13 Dec. 2002.
[8] S. W. Lee and C.-C. J. Kuo, “Complexity Modeling of Spatial and Temporal Compensations in H.264/AVC Decoding,” IEEE Transactions on Circuits and Systems for Video Technology, vol.20, no.5, pp.706-720, May 2010.
[9] S. W. Lee and C.-C. J. Kuo, “Complexity modeling of spatial and temporal compensations in H.264/AVC decoding,” in Proc. IEEE Int. Conf. Image Process. (ICIP), pp. 2504–2507, Oct. 2008.
[10] S. W. Lee and C.-C. J. Kuo, “Motion compensation complexity model for decoder-friendly H.264 system design,” in Proc. IEEE Int. Workshop Multimedia Signal Process. (MMSP), pp. 119–122 , Oct. 2007.
[11] S. W. Lee and C.-C. J. Kuo, “Complexity modeling of H.264/AVC CAVLC/UVLC entropy decoders, ” IEEE International Symposium on Circuits and Systems, vol., no., pp.1616-1619, 18-21, May 2008.
[12] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74–90, Nov. 1998.
[13] M. van der Schaar and Y. Andreopoulos, “Rate-distortion-complexity modeling for network and receiver aware adaptation,” IEEE Trans. Multimedia, vol. 7, no. 3, pp. 471–479, Jun. 2005.
[14] H. Kim and Y. Altunbasak, “Low-complexity macroblock mode selection for the H.264/AVC encoders,” IEEE Int. Conf. on Image Processing, Suntec City, Singapore, Oct. 2004.
[15] V. Lappalainen, A. Hallapuro, and T. D. Hamalainen, “Complexity of optimized H.26L video decoder implementation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 717–725, Jul. 2003.
[16] H. Y. Cheong and A. M. Tourapis, “Fast Motion Estimation within the H.264 codec, ” in proceedings of ICME-2003, Baltimore, MD, July 6-9, 2003.
[17] Joint Model reference software version JM 17.2, Available: http://iphome.hhi.de/suehring/tml/
指導教授 張寶基(Pao-chi Chang) 審核日期 2011-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明