博碩士論文 91542002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.118.146.169
姓名 李志賢(Jih-Hsien Lee)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 數位學習遊樂場:整合機器人與即時互動舞台在教室中建立擬真的學習環境
(Digital Learning Playground: Integrating a Robot and a Responsive Stage to Construct a Near Authentic Learning Environment in the Classroom)
相關論文
★ 學習馬賽克-以教科書內容置入平板之合作式情境學習遊樂場★ 為使用知識而設計的電子書- 以參考手冊為模式的電子書設計
★ 為使用知識而設計的電子書- 將紙本書籍以及電子書提供社群共建的機制★ 高互動低資源損耗之課堂學習系統設計與實際教學環境導入接受度探討
★ 依學生偏好及學習狀態建構之學習輔助者與知識協尋系統★ 網路資訊與學習系統之中文全文探勘工具
★ 支援使用者觀點之線上分析系統★ 由網站行為歷程以貝式學習建立學習者模式之引導系統
★ 網路合作學習系統與小組互動觀察工具★ 依作品集評量方式並支援學習狀況分析與監控之網路學習系統
★ 網路學習歷程之知識探索:學習效能評鑑之工具★ 網路學習系統之手機端學習輔助系統
★ 以網站行為的歷程建立具時間性學習者模式★ 行動學習資訊系統-學生端網路學習伺服器與個人數位助理端之學習系統
★ 應用貝式學習及決策樹之群組溝通網路監控系統★ 以網路群組作品及活動依角色分析之群組合作監控系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統的教室設計是讓老師將教學內容傳遞給學生,老師是知識的主要來源而學生大都是被動的知識接收者。大多數情況下,學生往往缺乏機會來應用他們所學到的知識及技能。然而,知識是學習者與環境互動的產品,基本上是受文化和活動的影響,在這種情況下,可能導致學生忽略了知識的來源、應用和意義。學生不僅很容易忘記所學的知識,更不知道如何將所學到的知識應用在現實的生活中,這可能導致學習效果不能達到預期的目的。
許多教育工作者也都主張學生要在真實的情況下學習。近年來,真實學習(Authentic Learning)已被廣泛的應用到不同的學習領域。它主要是提供一個真實的學習情境,讓學習者能沉浸在學習的環境中,透過親身的體驗來學習知識與技能。由於科技的發展,許多新興的資訊技術已經可以在特定的教學的目中被用來呈現擬真的環境。但目前大部份學校的教室,因受限於教室空間、設備、經費及擴展性等問題,很難將擬真的學習環境建置在教室中。因此,發展一個可行的機制,在教室中建置擬真的學習環境,讓學生透過真實情境的體驗來學習知識與技能,對促進學校教學的成效將是重要的關鍵。
為了能在教室中建立擬真的學習環境並將真實學習(Authentic Learning)的好處帶進傳統教室中.本研究在現有教室環境中建置一個具有經驗學習模式的擬真學習環境 : 數位學習遊樂場(Digital Learning Playground).教師可將教學內容轉化成學習情境,可以用它來進行教學活動;學生可以透過它所營造出來的擬真情境來進行體驗學習,也可以透過觀摩其它學生的學習經驗來強化自己的學習。本研究提出也提出一個結合實體機器人與混合實境技術的機制,結合戲劇式舞台的環境架設及混合實境的技術來創造一個學習情境。使用機器人來扮演學習代理者,以連結學習者與系統所呈現的學習情境。將體驗式學習的學習模式轉化到系統的教學設計中,讓學習者能獲得更真實的學習經驗。系統也設計了三種教學方法讓教師和學生可以在環境中進行教學與學習活動。
本系統經實驗結果顯示,有89.4%的學生同意本系統能提供擬真學習的經驗與學習樂趣。幾乎所有的可以學生都可以感受到經驗學習模式的設計,其中有93.3%的學生表示他們可將所學的知識轉化並應用到其他情境上。有93.3%的學生認同系統所提供的具經驗學習模式的學習機制有助於對知識的學習與瞭解,並相信他們可以有更好的學習成果。在學習成效的表現,實驗結果經統計分析後顯示,使用本系統的學生在測驗卷的平均成績(80.83)與使用原來教學方式學生的平均成績(68.00)高,從兩組獨立樣本t檢定的結果(P=0.028<0.05)有顯著性差異。老師表示本系統可以提供學生實際練習所學知識的機會,可以提生學生的學習動機與專注力,減輕老師與學生在課程中的負擔。他們還表示,大部分教室已經擁有本系統所需的設備,所以認為在教室中建置這樣的學習環境可行性相當高。綜觀本研究的結果顯示,我們可以利用數位科技來建構一個可行性高的擬真學習環境並且將真實學習的好處帶進傳統的教室裡。
摘要(英) The traditional design of classroom is to transfer and teach contents. Teachers are the main resources of learning, and students are passive receivers of knowledge. Mostly, students often lack the opportunity to apply what they learned. However, knowledge is the product of interactions of learners and environment, and is essentially affected by culture and activities. Under this situation could cause students to neglect the fountainhead, application, and meaning of knowledge. Students not only are easy to forget what they have learned, but also do not know how to use their knowledge into the real life. This could cause the learning outcomes cannot achieve the intended purpose.
Many educators have advocated that students should learn in real situations. In the recent years, authentic learning has been widely used on various fields. It provides a learning environment in order to allow the learner to immerse in the environment to develop knowledge and skills through problem solving in different situations. Many emerging information technologies have been used to present authentic environment in pedagogical purpose. How can we bring the benefits of real-world, situated learning to the traditional classroom? Authentic learning may provide one solution. However, the authentic learning environment might not be accessible for classrooms with concerns of sophisticated equipments, spatial convenience, cost, and extendibility. Thus, developing a mechanism to create an affordable near authentic learning environment in the classroom which students can learn effectively through the concrete experience is crucial to facilitating learning.
For construct a near authentic learning environment and bring the benefits of authentic learning to the conventional classroom, this study constructed a learning system in the classroom called Digital Learning Playground (DLP). Teachers can transfer learning contents into the system and utilize the DLP to assist students learning; students can acquire the experience through personal involvement and learn by hands-on experience. This study attempts to devise a mechanism to integrate the Mixed Reality technology and a robot to construct a near authentic learning environment. It adopted the concept of dramatic stage to construct a responsive stage, through the stage set up and Mixed Reality technology to create learning situations. A robot with emotion feedback was designed to play the role of learning agent. In order for learners to gain a more realistic learning experience, we included the experiential learning cycle in the instructional design. It also designed three instructional methods for teachers and students to conduct the learning activities in the classroom.
According to the results of the experiments, 89.4% of students satisfied the learning experiences provided by the system. Almost the students can acquire the learning model of “act-response-reflect” design and 93.3% students thought that they can transfer the knowledge to other similar situations. There also had 93.3% students thought that the system can help their learning and believed they could have better achievement through the system. It compared the test scores between the students who learn in the DLP with the students that did not use the DLP; we can clearly see that the students who earn in the DLP scored higher than the other students. The teacher indicated that the DLP could provide practical learning opportunities for students to use what they had learned. It could also allow the student to be more proactive, motivated and focused towards the lesson and lessen the burden on both the students and teachers. They in addition said that most classrooms already had the required equipment for DLP, so they feel that the possibility of using DLP in a classroom is quite high. This results of this study revealed that we can use digital technology to provide an affordable, accessible near authentic learning environment in the classroom and bring the benefits of authentic learning to the conventional classroom.
關鍵字(中) ★ 體驗學習
★ 教室學習
★ 機器人
★ 混合實境
★ 真實學習
關鍵字(英) ★ Classroom
★ Experiential Learning
★ Robot
★ Mixed Reality
★ Authentic Learning
論文目次 中文摘要 ---------- i
ABSTRACT ---------- iii
誌謝 ---------- v
Table of Content ---------- vi
Figure index ---------- viii
Table index ---------- ix
1. Introduction ---------- 1
1.1 Background ---------- 1
1.2 Motivation ---------- 2
1.3 Goal ---------- 3
1.4 Issues ---------- 4
1.5 Paper organization ---------- 6
2. Related Works ---------- 7
2.1 Experiential Learning ---------- 7
2.2 Mixed Reality Applications ---------- 9
2.3 Interactive characters ---------- 10
2.4 Educational robots ---------- 12
2.5 Summary of related works ---------- 14
3. Design approach ---------- 16
3.1 Investigate the possibility of using robots as an instructional tools ---------- 16
3.1.1 Characteristics of robots ---------- 17
3.1.2 Robot design as a learning partner in the classroom ---------- 19
3.1.3 Experiments ---------- 21
3.1.4 Discussions ---------- 26
3.2 Explore the effectiveness of Mixed Reality environments containing physical characters on learning activities ---------- 27
3.2.1 The learning environment ---------- 27
3.2.2 Experiments ---------- 30
3.2.3 Discussions ---------- 36
4. Digital Learning Playground ---------- 38
4.1 System design ---------- 38
4.1.1 The responsive stage in Digital Learning Playground ---------- 39
4.1.2 Experiential learning in Digital Learning Playground ---------- 40
4.1.3 Role of Robot Companion in Digital Learning Playground ---------- 41
4.2 System Implementation ---------- 42
4.2.1 System Hardware Setting ---------- 42
4.2.2 System Architecture ---------- 45
4.2.3 Activity System in Digital Learning Playground ---------- 47
4.3 Learning Design ---------- 48
4.3.1 Learning Activities ---------- 48
4.3.2 The instructional interaction relationship between the system and users ---------- 50
4.3.3 Snapshot of the System ---------- 52
5. Experiment and Discussions ---------- 55
5.1 Experiment hypotheses ---------- 55
5.2 The learning context ---------- 56
5.3 Procedure ---------- 60
5.4 Results and Findings ---------- 64
5.4.1 The learning experience toward the Digital Learning Playground ---------- 64
5.4.2 The instructional effects and learning impacts in the Digital Learning Playground ---------- 65
5.4.3 The influence on learning performance of the Digital Learning Playground ---------- 67
5.5 Discussions ---------- 68
5.6 Limitations ---------- 71
6. Conclusions ---------- 72
7. References ---------- 75
參考文獻 [1] L. M. Lunce, “Simulations: Bringing the benefits of situated learning to the traditional classroom”, Journal of Applied Educational Technology, Vol. 3(1), pp. 37-45, 2006.
[2] E. Dale, Audio-Visual Methods in Teaching (3rd Edn.), Holt, Rinehart, and Winston, 1969.
[3] J. Dewey, Schools of tomorrow. New York: E. P. Duton and Co., 1915.
[4] D. Kolb, Experiential learning: Experience as the source of learning and development, Prentice-Hall Englewood Cliffs, NJ.,1984.
[5] J. Herrington and R. Oliver, “An instructional design framework for authentic learning environments”, Educational Technology Research and Development, Vol. 48, pp. 23–48, 2000.
[6] L. Herod, Adult learning from theory to practice, retrieved 2011/06/20 from http://www.nald.ca/adultlearningcourse/glossary.htm.
[7] M. M. Lombardi, “Authentic learning for the 21st century: An overview”, Educause learning initiative, D. G. Oblinger (Ed.), 2007.
[8] R. Gagne, W. Wager, K. Golas, J. Keller, and J. Russell,.”Principles of instructional design”, Performance Improvement, Vol. 44(2), pp. 44-46, 2007.
[9] H. C. V. Vugt, E. A. Konijn, J. F. Hoorn, L. Keur, and A. Eliens, “Realism is not all! User engagement with task-related interface characters”, Interacting with Computers, Vol. 19 (2), pp. 267-280, 2007.
[10] N. Strangman, and T. Hall, Virtual reality/simulations, National Center on Accessing the General Curriculum, Wakefield, 2003.
[11] S. H. Hsu, “An initial comparison of physical and virtual learning companion on learner's concentration”, National Central University, Master thesis, 2007.
[12] C. W. Chang, J. H. Lee, P. Y. Chao, C. Y. Wang, and G. D. Chen, “Exploring the possibility of using humanoid robots as instructional tools for teaching a second language in primary school”, Journal of Educational Technology & Society, Vol. 13(2), pp. 13-24, 2010.
[13] D. A. Kolb, R. E. Boyatzis and C. Mainemelis, “Experiential Learning Theory: Previous Research and New Directions”, Sternberg, R. J. and Zhang, L. F. (Eds.). Perspectives on cognitive, learning, and thinking styles. NJ: Lawrence Erlbaum, 2000.
[14] M. S. Donovan, J. D. Bransford, & J. W. Pellegrino, How People Learn: Bridging Research and Practice, National Academies Press, Washington, DC, 1999.
[15] J. Herrington, and L. Kervin, “Authentic learning supported by technology: 10 suggestions and cases of integration in classrooms”, Educational Media International, Vol. 44(3), pp. 219-236, 2007.
[16] Z. G. Pan, A. D. Cheok, H. W. Yang, J. J. Zhu, J. Y. Shi, “Virtual reality and mixed reality for virtual learning environments”, Computers & graphics, Vol. 30, pp, 20-28, 2006.
[17] M. C. Salzman, C. Dede, R. B. Loftin, and J. Chen, “A model for understanding how virtual reality aids complex conceptual learning”, Presence: Teleoperators and Virtual Environments, Vol. 8, pp. 293–316, 1999.
[18] W. Liu, and D. Cheok, M.L. Lim, and Y.L. Theng, “Mixed Reality Classroom - Learning from Entertainment”, Proceedings of the 2nd international conference on Digital Interactive Media in Entertainment and Arts, Perth, Australia, pp. 65-72, 2007
[19] M. Billinghurst, H. Kato,and I. Poupyrev, "The MagicBook: a transitional AR interface", Computers & Graphics, Vol. 25(5), pp. 745-753, 2001.
[20] F. W. Bruns, H. H. Erbe, D. Muller, F. M. Schaf, C. E. Pereira, C. L. Reichert, F. Campana, and I. A. Krakheche, “Collaborative Learning and Engineering Workspaces”, proceedings of the Cost Effective Automation in Networked Product Development and Manufacturing (CEA), 2007
[21] M. Roussou, “A VR Playground for Learning Abstract Mathematics Concepts”, Computer Graphics and Applications, IEEE, Vol. 29(1), 2009
[22] L. Xie, A. N. Antle, and N. Motamedi, “Are tangibles more fun?: comparing children’s enjoyment and engagement using physical, graphical and tangible user interfaces”, in TEI ’08: Proceedings of the 2nd international conference on Tangible and embedded interaction. ACM, New York, NY, USA, pp. 191–198, 2008.
[23] R. Andrew, K. Johnsen, R. Dickerson, B. Lok, M. Cohen, A. Stevens, T. Bernard, C. Oxendine, P. Wagner, and S. Lind, “Comparing Interpersonal Interactions with a Virtual Human to those with a Real Human”, IEEE Transactions on Visualization and Computer Graphics, Vol. 13, pp. 443-457, 2007.
[24] J. Wainer, D. Feil-Seifer, D. Shell, and M. Mataric, “Embodiment and human-robot interaction: A task-based perspective”, in Proceedings of the International Conference on Human-Robot Interaction, 2007.
[25] F. Klassner, and S. Anderson, “Lego MindStorms: Not just for K-12 anymore”, IEEE Robotics and Automation Magazine, 2003.
[26] H. J. Ryu, S. S. Kwak, and M. S. Kim, “Design Factors for External Form of Robots as Elementary School Teaching Assistants”, The Bulletin of Japanese Society for Science of Design (JSSD), Vol. 54(5), 2008.
[27] S. Papert, The children's machine, New York: Basic Books, 1993.
[28] T. Ito, G. T. Nguyen, and M. Sugimoto, “A Storytelling Support System using Robots and Handheld Projectors”, In Proceedings of IDC 2008, Evanston, IL, 2008.
[29] H. Jeonghye, K. Dongho, L. KyungSeon, P. SungJu, and S. KyungChul, “A Teaching Assistant Robot in Elementary Schools”, The 2nd International Conference on Ubiquitous Robots and Ambient Intelligence, 2005.
[30] T. Kanda, T. Hirano, D. Eaton, and H. Ishiguro, “Interactive Robots as Social Partners and Peer Tutors for Children: A Field Trial”, Journal of Human Computer Interaction, Vol. 19 (1-2), pp. 61-84, 2004.
[31] T. Kanda, and H. Ishiguro, “Communication Robots for Elementary Schools” in Proc. AISB'05 Symposium Robot Companions: Hard Problems and Open Challenges in Robot-Human Interaction, pp. 54-63, 2005.
[32] J.B. Weinberg, and X. Yu, ”Robotics in education: Low cost platforms for teaching integrated systems”, IEEE Robotics & Automation Magazine, Vol. 10(2), pp. 4–6, 2003.
[33] S. Turkle, and S. Papert, “Epistemological pluralism and the revaluation of the concrete”, Journal of Mathematical Behavior, Vol. 11(1), pp. 3–33, 1992.
[34] F. Marin, B. Mikhak, M. Resnick, B. Silverman, and R. Berg, “To mindstorms and beyond: Evolution of a construction kit for magical machines”, A. Druin & J. Hendler (Eds.), Robots for kids: Exploring new technologies for learning pp. 9–33. San Mateo, CA: Morgan Kaufmann, 2000.
[35] M. Cooper, D. Keating, W. Harwin, and K. Dautenhahn, “Robots in the classroom – Tools for accessible education”., C. Buhler, and H. Knops (Eds.), Assistive Technology on the Threshold of the New Millennium, pp. 448–452, Amsterdam: IOS Press, 1999.
[36] J. Hendler, “Robots for the rest of us: Designing systems out of the box”, A. Druin, and J. Hendler (Eds.), Robots for kids: Exploring new technologies for learning, San Mateo, CA: Morgan Kaufmann., 2000.
[37] H. Jeonghye, K. Dongho, L. KyungSeon, P. SungJu, and S. KyungChul, “A Teaching Assistant Robot in Elementary Schools”, The 2nd International Conference on Ubiquitous Robots and Ambient Intelligence, 2005.
[38] T. Kanda, , R. Sato, N. Saiwaki and H. Ishiguro, “A Two-Month Field Trial in an Elementary School for Long-Term Human–Robot Interaction” , IEEE TRANSACTIONS ON ROBOTICS, Vol. 23(5), pp. 962-971, 2007.
[39] M. Dragone, T. Holz, and G. M. P. O'Hare, “Using Mixed Reality Agents as Social Interfaces for Robots” in: Proceedings of the 16th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2007), Jeju Island, Korea, August 26-29, 2007.
[40] I. A. Zualkernan, “A framework and a methodology for developing authentic constructivist e-learning environments”, Journal of Educational Technology & Society, Vol. 9(2), pp. 198-212, 2006.
[41] C. W. Chang, J. H. Lee, C. Y. Wang, and G. D. Chen, “Improving the authentic learning experience by integrating robots into the mixed reality environment”, Computers & Education. Vol. 55(4), pp. 1572-1578, 2010.
[42] S. E.Smaldino, J. D. Russell, R. Heinich, and M. Molenda, Instructional media and technologies for learning (8th ed.), Upper Saddle River, NJ: Prentice Hall, 2004.
[43] B. House, J. Malkin, and J. A Bilmes, “The VoiceBot: A voice controlled robot arm”, in proceedings of CHI 2009, New York: ACM Press, 2009.
[44] E. Garvie, Story as vehicle: Teaching English to young children, Clevedon, Avon, UK: Multilingual Matters, 1990.
[45] H. D. Brown, Principles of language learning and teaching (4th ed.), New York: Longman, 2000.
[46] P. Castagnaro, “Audiolingual method and behaviorism: From misunderstanding to myth”, Applied Linguistics, Vol. 27, pp. 519–526, 2006.
[47] M. Csikszentmihalyi, Flow: The psychology of optimal experience, New York: Harper & Row, 1990.
[48] J. J. Asher, Learning another language through actions: The complete teacher's guidebook (2nd ed.). Los Gatos, CA: Sky Oaks Productions, 1982.
[49] T.V. Higgs, and R. Clifford, “The push toward communication”, in Curriculum, Competence and the Foreign Language Teacher. Skokie, T.V. Higgs (Eds.), IL: National Textbook, 1982.
[50] A Uhlenbeck, “The development of an assessment procedure for beginning teachers of English as a foreign language”, doctoral dissertation, University of Leiden, The Netherlands, 2002.
[51] M. Finocchiaro, and C. Brumfit, The Functional–Notional Approach: From Theory to Practice, New York: Oxford University Press, 1983.
[52] J. T .M. Gulikers, Th. J. Bastiaens, and P. A. Kirschner, “Authentic assessment, student and teacher perceptions: the practical value of the five-dimensional framework”, Journal of Vocational Education and Training. Vol. 58 (3). pp. 337 – 357, 2006.
[53] P. Marti, L. Giusti, A. Pollini, and A. Rullo, “Experiencing the flow: design issues in human-robot interaction”, Proceedings of Soc-Eusai, Grenoble, France, 2005.
[54] D. A. Schon, Educating the Reflective Practitioner: Toward a New Design for Teaching and Learning in the Professions, San Francisco: Jossey-Bass, 1988.
[55] D. Willis, and J. Willis, Doing task-based teaching, Oxford: Oxford University Press, 2007.
[56] N. Prabhu, Second Language Pedagogy, Oxford: Oxford University Press, 1987.
[57] W. Littlewood, Communicative Language Teaching: An Introduction, Cambridge: Cambridge University Press, 1981.
指導教授 陳國棟(Gwo-dong Chen) 審核日期 2011-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明