博碩士論文 985201002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:169 、訪客IP:3.131.13.37
姓名 劉詩群(Shih-Chun Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 粒子最佳化與模糊控制於輪型機器人之自動導航應用
(Automatic Navigation of a Wheeled Mobile Robot Using Particle Swarm Optimization and Fuzzy Control)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統
★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用
★ 四軸飛行器之偵測應用及其無線充電系統之探討★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
★ 模糊控制與灰色預測應用於隧道型機械手臂之分析★ 模糊滑動模態控制器之設計及應用於非線性系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文旨在為提供輪型機器人一個適合的自動導航方法,並配合感測器偵測周遭環境建構平面地圖,以使用者決定目標點並經由輪型機器人完成,自動導航的方法根據感測器的不同也會有所差異,如何研究出兼具避障與最短路徑也是目前非常重要的議題
粒子最佳化常用於搜尋最佳解的問題,與基因演算法有許多相似之處,但在參數設定與收斂速度上更優異,不需要複雜的數學式也使得此演算法很容易實現在硬體上,本研究以輪型機器人行走所需要的角度與距離長度當作問題的維度,經由不斷的疊代後找出最佳路線;另外針對此導航方法所會遇到的盲點提出利用模糊控制的解決方法,改進輪型機器人在遇到某些特殊狀況時會來回移動的問題。
在模擬與實驗中,以軟體模擬所提出的導航方法,設計出許多不同的障礙物場景並且觀察結果,最後再以電腦與輪型機器人完成一個跨平台的架構,驗證此方法的可行性。
摘要(英) This paper develops a approach of Navigation for a wheeled mobile robot(WMR). Next, the local map is constructed by using a sensor.The WMR will arrive at the destination which is assigned by users. Additionally, it is very important how to find the collision-free and the shortest path for the WMR.
Particle Swarm Optimization(PSO) is usually applied for optimization problems, but the convergence speed and the parameter setting are better than those of the GA. It’s easy for implementation, and the turn angle and the forward distance as main factors of problem. Finally , the best path after many times of iteration can be obtained. In addition, Fuzzy Conrol is used to solve special condition under which, WMR may be stuck in the same road.
In this work, experimental results are given to demonstrate the feasibility of this method
關鍵字(中) ★ 自動導航
★ 輪型機器人
★ 模糊控制
★ 粒子最佳化
關鍵字(英) ★ Automatic Navigation
★ Particle Swarm Optimization
★ Fuzzy Control
論文目次 中文摘要 …………………………………………………….I
英文摘要 ……………………………………………...…….II
致謝 ………………………………………………….. III
目錄 ………………………………………………….. IV
圖目錄 ………………………………………………...…VI
表目錄 ……………………………………………...……IX
一、 緒論.……………………………….…….………1
1-1 前言…………………………………………………..…1
1-2 文獻探討……………………………………………..…2
1-3 研究動機與目的…………………………………..……4
1-4 論文架構………………………………………………..6
二、 系統介紹….……………………………...………..7
2-1 簡介…………………………………………….….....7
2-2 輪型機器人之運動系統………………………………..7
2-3 馬達與位置控制器…………………………...….…..9
2-3-1 直流馬達...……………………………….……..9
2-3-2 位置控制器......…….………………….……….10
2-4 雷射測距儀……………………………….…………...11
2-5 BASIC Stamp 2px微處理器……..…….……………..14
2-6 藍芽模組………………..…………………….……….15
2-7 電力系統………………………………………………..16
三、 粒子最佳化應用於導航控制……………………….17
3-1 粒子群最佳化簡介………………………………………17
3-2 應用PSO於WMR之導航.…………………………………22
3-2-1 單維PSO……………...………………….………22
3-2-2 二維PSO……………………………………………24
3-3 參數調整………………………………………………26
3-3-1 正規化………………………………………………26
3-3-2 基因演算法應用於參數選擇………………………27
四、 模糊控制應用於沿牆行走…………………………32
4-1 特殊狀況之避障………………………………………32
4-2 模糊邏輯控制……………………………………………34
五、 實驗結果與討論……………………………………43
5-1 自動導航模擬……………………………………………43
5-2 實驗結果…………………………………………………54
六、 結論與未來展望……………………………………58
6-1 結論………………………………………………………57
6-2 未來展望…………………………………………………59
參考文獻 ………………………………………………………………61
附錄 ………………………………………………………………67
參考文獻 [1] B. Barshan, and R. Kuc, “Differentating sonar reflections from orners
and planes by employing an intelligent sensor .” , IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol.12, No.6, pp.560-569,
Jun. 1990.
[2] M. Hebert, “Active and passive range sensing for robotics” ,Proc. Int.
Conf. on Robotics and Automation, San Francisco, CA , pp. 102-110, Apr. 2000.
[3] J. Illingworth and A. Hilton, “Automatic construction of static object models using computer vision.” , Electronics & Communication Engineering Journal, Vol.10, Issue.3,pp.103-113, Jun. 1998.
[4] 許書彰,「實現自走車運動路徑規劃於ARM-based系統發展平台」,國立成功大學電機工程學系,碩士論文,民國95年。
[5] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning” , IEEE Trans. Robotics and Automation, vol. 16, no. 5, pp. 615-620, Oct. 2000.
[6] J. H. Chuang and N. Ahija, “An analytically tractable potential field model of free space and its application in obstacle avoidance”, IEEE Trans. Systems, Man, and Cybernetics, Part B, vol. 28, no. 5, pp. 729-736, Oct. 1998.
[7] J. H. Chuang, “Potential-based modeling of three-dimensional workspace for obstacle avoidance”, IEEE Trans. Robotics and Automation, vol. 14, no. 5, pp. 778-785, Oct. 1998.
[8] W. G. Han, S. M. Beak, and T. Y. Kuc, “Genetic algorithm based path planning and dynamic obstacle avoidance of mobile robots”, Proc. of IEEE Int. Conf. System, Man, and Cybernetics, vol. 3, pp. 2747-2751, Oct. 1997.
[9] K. Sugihara and J. Smith, “Genetic algorithms for adaptive motion planning of an autonomous mobile robot” , IEEE Int. Symposium Computational Intelligence in Robotics and Automation, pp. 138-143, Jul. 1997.
[10] Y. Hu and S. X. Yang, “A knowledge based genetic algorithm for path planning of a mobile robot” , IEEE Int. Conf. Robotics and Automation, vol. 5, pp. 4350-4355, Apr. 2004.
[11] Singh Mukesh Kumar, Parhi Dayal R. and Pothal Jayanta Kumar,“ANFIS Approach for Navigation of Mobile Robots” , International Conference on Advances in Recent Technologies in Communication and Computing,2009
[12] 林志成,「結合影像回授之自走車控制與路徑規畫」,國立臺灣海洋大學機械與機電工程學系,碩士論文,民國98年。
[13] E. W. Dijkstra, “A note on two problems in connection with graphs”, Numerische Mathematik, Vol. 1 , pp. 269-271,1959.
[14] 施宗榮,「GPS於模型車自動導控系統之設計與應用」,國立中央
大學電機工程學系,碩士論文,民國88年。
[15] H. Makela and K. Koskinen, “Navigation of outdoor mobile robots using dead reckoning and visually detected landmarks ” , IEEE Fifth International Conference on Advanced Robotics, Robots in Unstructured Environments, Vol. 2, pp. 1051-1056, Jun. 1991.
[16] M. W. Han and T. Kolejka, “Artificial neural networks for control of
autonomous mobile robots” , Intelligent Manufacturing System, pp. 157-162, 1994.
[17] P. Kampmann and G. Schmidt, “Indoor navigation of mobile robots
by use of learned maps”, Information Processing in Autonomous Mobile Robots, Proceedings of the International Workshop, pp. 151-169, 1991
[18] 林子揚,「雷射測距儀應用於輪型機器人自動導航」,國立中央大學,碩士論文,民國99年。
[19] Parallax Inc, Motor Mount and Wheel Kit (#27971) with Position Controller (#29319)
[20] C. Ye and J. Borenstein, “Characterization of a 2-D laser scanner for mobile robot obstacle negotiation ”, IEEE International Conference on Robotics & Automation, pp.2512-2518, 2002.
[21] Hokuyo Automatic co Ltd, URG-Series Communication Protocol Specification (SCIP Version2.0)
[22] Parallax Inc, BASIC Stamp 2px Microcontroller (BS2PX-IC) Brief
[23] Parallax Inc, ZX-BLUETOOTH Slave Embedded Serial Bluetooth board
[24] Eberhart, R. C. and J. Kennedy “A new optimizerusing particle swarm theory”, Proceedings SixthInternational Symposium on Micro Machine and Human Science, Nagoya, Japan. 1995.
[25] J. Kennedy and Eberhart R. C. “Particle swarm optimization”, Proceedings IEEE International Conference on Neural Networks, Piscataway, NJ. 1995.
[26] Kennedy, J., R. C. Eberhart and Y. Shi “Swarm Intelligence”, 287-324. The Morgan Kaufmann Series in Artificial Intelligence, San Francisco, CA. 2001.
[27] Eberhart, R. C. and Y. Shi “Comparison between genetic algorithms and particle swarm optimization”, 1998 Annual Conference on Evolutionary Programming, San Diego, CA. 1998.
[28] Shi, Y. and R. C. Eberhart “A modified particle swarm optimizer ”, Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, Piscataway, NJ. 1998.
[29] Shi, Y. and R. C. Eberhart “Fuzzy adaptive particle swarm optimization ” , Proceeding of the 2001 Congress on Evolutionary Computation, Piscataway, NJ. 2001.
[30] 劉詩群,「利用粒子群最佳化法訓練ANFIS之參數」,暨南大學系統工程研討會,南投,民國100年。
[31] Gen M. and R. Cheng, Genetic Algorithms & Engineering
Optimization ,John-Wiley,2000.
[32] 王文俊,認識Fuzzy,全華書局,台北,民國89年.
[33] 李欽舜,「輪型行動機器人之運動控制與避障路徑規劃」,國立中央大學電機工程學系,碩士論文,民國93年。.
[34] 徐承佑,「機器人沿牆走行為模式之模糊控制設計器設計」,國立中興大學電機工程學系,碩士論文,民國98年.
[35] K. Izumi, K. Watanabe, S.-H. Jin, “Obstacle avoidance of mobile robot using fuzzy behavior-based control with module learning” , IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 454-459, Oct. 1999.
[36] P. Van Turennout, G. Honderd, L. J. Van Schelven, “Wall following control of a mobile robot” , IEEE International Conference on Robotics and Automation, vol. 1, pp. 280-285, May 1992.
[37] S. Fazli and L. Kleeman, “Wall following and Obstacle avoidance results from a multi-DSP sonar ring on mobile robot” , IEEE International Conference on Mechatronics and Automation, vol. 1, pp. 432-437, Jul. 2005.
[38] T. Yata, L. Kleeman, S. Yuta, “Wall following using angle information measured by a single ultrasonic transducer” , IEEE International Conference on Robotics and Automation, vol. 2, pp. 1590-1596, May 1998.
[39] S. Thongchai, S. Suksakulchai, D. M. Wilkes, and N. Sarkar, “Sonar behavior-based fuzzy control for a mobile robot”, IEEE International Conference on System, Man, and Cybernetics, vol. 5, pp. 3532-3537, Oct. 2000.
指導教授 鍾鴻源(Hung-Yuan Chung) 審核日期 2011-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明