以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:43 、訪客IP:3.142.201.93
姓名 張宇瑞(Yu-Jui Chang) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 鍺量子點在氮化矽中的形成機制與鍺量子點可見光光二極體的研製
(Placement of Ge quantum dots in silicon nitride substrate and realization of Ge quantum dots visible-light photo-diodes)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文利用選擇性氧化在二氧化矽或氮化矽絕緣層上之複晶矽鍺結構的方法將鍺量子點置放於二氧化矽或氮化矽等不同的介質環境中。因此,我們不僅可以控制鍺量子點本身的大小,也可以調變量子點周圍的介質環境,進一步改變了鍺量子點的電子能結構。此外,量子點的大小及結晶性也會受到周圍的介質環境不同而被影響。
利用鍺量子點自身所誘發的氮化矽局部氧化效應,我們成功地將鍺量子點置於氮化矽介質層中。透過穿透式電子顯微鏡(TEM)與能量散佈光譜儀(EDX)等材料檢測方法來探討與建構鍺量子點在氮化矽中獨特的移動行為機制,如此就能精確地掌控量子點在氮化矽中的位置、大小與結晶形態。變溫與變強度光子激發光(PL)的量測結果證實在3.3 eV的放射峰值主要是來自於鍺量子點內部的自由激子傳輸 (free exciton transition),而且此放射峰值的波長會隨著量子點直徑的縮小而展現出藍移的現象。
藉由多次複晶矽鍺沉積與氧化製程的堆疊技術,得以形成量子點大小均勻或漸進改變的三維鍺量子點陣列,進而實際研製出高品質的可見光光二極體。同時我們也設計鍺量子點在氮化矽層中的位置,使鍺量子點掩埋於氮化矽層中或直接接觸到矽基板,分別製作出以感應電流或以激子穿隧電流為主要傳輸機制的高光響應度的光二極體。
摘要(英) In this thesis, we demonstrated the precise placement of Ge quantum dots (QDs) in Si3N4 and SiO2 matrices by selectively oxidizing poly-SiGe-on-SiO2 or -Si3N4. Thereby, we are able to modulate electronic structure of Ge QDs by means of altering their size and the host materials based on the quantum confinement effects. The QD size and crystallinity appear to be strongly influenced by the host materials.
Using the catalytically-enhanced local oxidation of Si3N4 by Ge QDs, we have successfully placed the Ge QDs into Si3N4 layer. We investigate the unique migration behavior of Ge QDs burrowing into the underneath Si3N4 by transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis, so that we can precisely control the position, size and the crystal morphology of Ge QDs embedded in Si3N4. The power dependent and temperature dependent photoluminescence (PL) spectra show that the peak centered at 3.3 eV is dominated by free exciton transition in the Ge QDs. The PL spectra reveal a blueshift in peak energy as the dot size decreases.
We have fabricated both uniform-sized or grading-sized Ge QDs array for high performance visible-light photo-diodes by repeating the stack deposition and oxidation of Si3N4/poly-SiGe/SiO2 in layer-cake technique. The significant photocurrent enhancement in Ge QD photodiodes is inferred from the photoexcited exciton tunneling or photoinduced conduction currents.
關鍵字(中) ★ 多面形的鍺量子點
★ 鍺量子點
★ 感應電流
★ 氮化矽局部氧化效應
★ 夾心蛋糕的技術
★ Ostwald 熟化現象關鍵字(英) ★ catalytically-enhanced local oxidation of Si3N4
★ germanium quantum dot
★ faceted germanium quantum dot
★ Ostwald ripening
★ layer-cake technique
★ induced current論文目次 目錄
中文摘要 ………………………………………………………………… i
英文摘要 ………………………………………………………………… ii
致謝 ………………………………………………………………… iv
目錄 ………………………………………………………………… vi
圖目錄 ………………………………………………………………… ix
表目錄 ………………………………………………………………… xiii
第一章、簡介與研究動機
1-1 奈米科技的發展 ……………………………………………………………01
1-2 量子點奈米晶粒 ……………………………………………………………02
1-3 鍺量子點的優勢 ……………………………………………………………03
1-4 鍺量子點光電元件的應用 …………………………………………………04
1-5 研究動機 ……………………………………………………………………05
第二章、量子點在二氧化矽的機制探討
2-1 前言 …………………………………………………………………………08
2-2 氧化矽鍺時間對形成鍺量子點的影響 …………………………………… 09
2-3 後續熱製程對鍺量子點的影響 ……………………………………………10
2-3-1 鍺量子點再經過長時間高溫氧化的變化 …………………………11
2-3-2 鍺量子點再經過長時間高溫回火的變化 …………………………11
第三章、鍺量子點在氮化矽的機制探討
3-1 前言 …………………………………………………………………………20
3-2 氮化矽中的鍺量子點尺寸之掌控 …………………………………………21
3-3 鍺量子點在氮化矽中獨特的移動行為 …………………………………… 23
3-3-1 鍺量子點所誘發的氮化矽局部氧化效應 …………………………24
3-3-2 鍺量子點在氮化矽中移動的驅動力來源 …………………………25
3-3-3 氮化矽中的鍺量子點位置之掌控 …………………………………26
3-4 夾心蛋糕(layer-cake)的技術 ……………………………………………26
3-5 鍺量子點在氮化矽與二氧化矽中的比較 …………………………………28
第四章、光二極體的製作與量測分析
4-1 前言 …………………………………………………………………………38
4-2 三維鍺量子點陣列的光子激發光光譜 ……………………………………38
4-3 鍺量子點光二極體的製作流程與分裂條件 ………………………………40
4-4 光二極體的量測結果與分析 ………………………………………………42
4-4-1 閘極有無鍺量子點存在的比較 ……………………………………43
4-4-2 感應電流與激子穿隧為電流傳輸機制的比較 ……………………43
4-4-3 特定尺寸與堆疊不同大小的鍺量子點比較 ………………………44
4-5 結論 ………………………………………………………………………46
第五章、總結與未來展望 ………………………………………………………58
參考文獻 ……………………………………………………………………………61
參考文獻 [1] V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature, Vol. 370, p. 354, 1994.
[2] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science, Vol. 295, p. 2425, 2002.
[3] G. Joshi et al, “Superior thermal conductivity of single-layer graphene,” Nano Lett., Vol.8, p. 902, 2008
[4] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B, Vol. 46, p. 15578, 1992.
[5] L. Zhung, L. Gyo and S. Y. Chou, IEEE Int. Electron Devices Meeting, p. 167, 1997.
[6] Y. Maeda et al, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Applied Physics Letters, Vol. 59, p. 3168, 1991.
[7] K. V. Shcheglov, et al, “Electroluminescence and photoluminescence of Ge-implanted Si/SiO2/Si structures,” Applied Physics Letters, Vol. 66, p. 745, 1995.
[8] Valentin Craciun et al, “Light emission from germanium nanoparticles formed by ultraviolet assisted oxidation of silicon-germanium,” Applied Physics Letters, Vol. 69, p. 1506, 1996.
[9] P. W. Li et al, “Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Applied Physics Letters, Vol. 83, p. 4628, 2003.
[10] P. W. Li et al., “Optical and electronic properties of Ge quantum dots formed by selective oxidation of SiGe/Si-on-Insulator,” Jpn. J. Appl. Phys., Vol. 43, p. 7788, 2004.
[11] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dots formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnology, Vol. 18, p. 145402, 2007.
[12] Min Cao, Albert Wang, Krishna C. Saraswat, “Low Pressure Chemical Vapor Deposition of Si1-xGex Film on SiO2”, J. Electrochem. Soc., Vol. 141, p. 1566, 1995.
[13] 曾韋傑, “選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用”,碩士論文,國立中央大學,民國94年。
[14] 吳榮軒, “鍺浮點記憶體之研製”,碩士論文,國立中央大學,民國95年。
[15] Martin Zinke-Allmang, Leonard C. Feldman and Marcia H. Grabow, “Clustering on surfaces,” Surface Science Reports, Vol. 16, p. 377, 1992.
[16] J. W. Mullin, “Crystallization (Fourth Edition),” Butterworth-Heinemann, Boston, 2001.
[17] C. Bonafos et al., “Ostwald ripening of Ge precipitates elaborated by ion implantation in SiO2,” Materials Science and Engineering, Vol. 69, p. 380, 2000.
[18] A. A. Stekolnikov and F. Bechstedt, “Shape of free and constrained group-IV crystallites: Influence of surface energies,” Phys. Rev. B, Vol. 72, p. 125326, 2005.
[19] K. H. Chen, C. Y. Chien and P. W. Li, “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology, Vol. 21, p. 055302, 2010.
[20] C. Y. Chien et al., “Formation of Ge quantum dots array in layer-cake technique for advanced photovoltaics,” Nanotechnology, Vol. 21, p. 505201, 2010.
[21] Honghua Du, Richard E. Tressler, and Karl E. Spear, “Thermodynamics of the Si-N-O system and kinetic modeling of oxidation of Si3N4,” Journal of Electrochemical Society, Vol. 136, p. 3210, 1989.
[22] H H Silvestri et al., “Diffusion of silicon in crystalline germanium,” Semicond. Sci. Technol., Vol. 21, p. 758, 2006.
[23] S. S. Tseng, I. H. Chen, and P. W. Li, “Photoresponses in polycrystalline silicon phototransistors incorporating germanium quantum dots in the gate dielectrics,” Applied Physics Letters, Vol. 83, p. 4628, 2003.
[24] Shirong Jin, Yanlan Zheng, and Aizhen Li, “Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures,” Journal of Applied Physics, Vol. 82, p. 3870, 1997.
[25] T. Schmidt, K. Lischka and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B, Vol. 45, p. 8989, 1992.
[26] 陳英豪, “閘介電層含鍺量子點複晶矽薄膜電晶體之光響應研究”,碩士論文,國立中央大學,民國94年。
指導教授 李佩雯(Pei-Wen Li) 審核日期 2011-7-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare