參考文獻 |
[1] W. T. Liberson, H. J. Holmquest, D. Scot, and M. Dow, “Functional electrotherapy: stimulation of peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients,” Archives of Physical Medicine and Rehabilitation, vol. 42, pp. 101-105, Feb. 1961.
[2] A. Kralj, T. Bajd, R. Turk, J. Krajnik, and H. Benko, “Gait restoration in paraplegic patients: a feasibility demonstration using multichannel surface electrode FES,” Journal of Rehabilitation R&D, vol. 20, pp. 3-20, Jul. 1983.
[3] C. W. Caldwell and J. B. Reswick, “A percutaneous wire electrode for chronic research use,” IEEE Transactions on Bio-Medical Engineering, vol. 22, no.5, pp. 429-432, Sep. 1975.
[4] D. R. McNeal, R. J. Nakai, P. Meadows, and W. Tu, “Open-loop control of the freely-swinging paralyzed leg,” IEEE Transactions on Bio-Medical Engineering, vol. 36, no. 9, pp.895-905, Sep. 1989.
[5] M. Mahadevappa, J. D. Weiland, D. Yanai, I Fine, R. J. Greenberg, and M. S. Humayun, “Perceptual thresholds and electrode impedance in three retinal prosthesis subjects,” IEEE Transactions on Neural Systems Rehabilitation Engineering, vol. 13, no. 2, pp. 201-206, Jun. 2005.
[6] A. P. Chu, K. Morris, R. J. Greenberg, and D. M. Zhou, “Stimulus induced pH changes in retinal implant,” IEEE Engineering in Medicine and Biology Society Conference, vol. 2, pp. 4160-4162, Sep. 2004.
[7] L. S. Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas, “A very low-power CMOS mixed-signal IC for implantable pacemaker applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2446-2456, Dec. 2004.
[8] J. Georgiou and C. Toumazou, “A 126-μW cochlear chip for a totally implantable system,” IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 430-443, Feb. 2005.
[9] S. K. Kelly and J. Wyatt, “A power-efficient voltage-based neural tissue stimulator with energy recovery,” IEEE Solid-State Circuits Conference, pp. 228-230, Feb. 2004.
[10] M. Ghovanloo, “Switched-capacitor based implantable low-power wireless microstimulating systems,” IEEE International Symposium on Circuits and Systems, pp. 2197-2200, May 2006.
[11] M. Sivaprakasam, W. Liu, G. Wang, J. D. Weiland, and M. S. Humayum, “Architecture tradeoffs in high-density microstimulators for retinal prosthesis,” IEEE Transactions on Circuits and Systems, Reg. Papers, vol. 52, no. 12, pp. 2629-2641, Dec. 2005.
[12] https://www.blindness.org
[13] http://webvision.med.utah.edu
[14] J. D. Weiland and M. S. Humayun, “Intraocular retinal prosthesis,” IEEE Engineering Medicine and Biology Magazine, vol. 25, pp. 60-66, Sep. 2006.
[15] J. D. Weiland, D. Yanai, M. Mahadevappa, R. Williamson, B. V. Mech, G. Y. Fujii, J. Little, R. J. Greenberg, E. de Juan Jr., and M. S. Humayun, “Electrical stimulation of retina in blind humans,” IEEE Engineering in Medicine and Biology Society Conference, vol. 3, pp. 2021-2022, Sep. 2003.
[16] P. Hossain, I. W. Seetho, A. C. Browning, and W. M. Amoaku, “Artificial means for restoring vision,” BMJ, vol. 330, pp. 30-33, Jan. 2005.
[17] K. Cha, K. W. Horch, R. A. Normann, and D. K. Boman, “Reading speed with a pixelized vision system,” Journal of the Optical Society of America. A, vol. 9, no. 5, pp. 673-677, May 1992.
[18] R. W Thompson, G. D. Barnett, M. S. Humayun, and G. Dagnelie, “Facial recognition using simulated prosthetic pixelized vision,” Investigative Ophthalmology and Visual Science, vol. 44, no. 11, pp. 5035-5042, Nov. 2003.
[19] M. Sivaprakasam, W. Liu, M. S. Humayun, and J. D. Weiland, “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 763-771, Mar. 2005.
[20] J. D. Weiland and M. S. Humayun, “A biomimetic retinal stimulating array: design considerations,” IEEE Engineering Medicine and Biology Magazine, vol. 24, no. 12, pp. 14-21, Sep. 2005.
[21] S. C. DeMarco, W. Liu, P. R. Singh, G. Lazzi, M. S. Humayun, and J. D. Weiland, “An arbitrary waveform stimulus circuit for visual prostheses using a low-area multibias DAC,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1679-1690, Oct. 2003.
[22] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[23] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[24] W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. Juan, J. D. Weiland, and R. Greenberg, “A neuro-stimulus chip with telemetry unit for retinal prosthetic device,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1487-1497, Oct. 2000.
[25] A. B. Majji, M. S. Humayun, J. D. Weiland, S. Suzuki, S. A. D’Anna, and E. de Juan Jr., “Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs,” Investigative Ophthalmology and Visual Science, vol. 40, no. 9, pp. 2073-2081, Aug. 1999.
[26] A. S. Sedra and K. C. Smith, “Microelectronic circuits,” 5th ed. New York: Oxford, Aug. 2007.
[27] A. Harb and M. Sawan, “New low-power low-voltage high-CMRR CMOS instrumentation amplifier,” IEEE International Symposium on Circuits and Systems, vol. 6,pp. 97-100, May 1999.
[28] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford University Press, 2002.
[29] C. H. Kuo, S. L. Chen, and S. I. Liu, “Magnetic-field-to-digital converter using PWM and TDC techniques,” IEE Proceedings of Circuits, Devices and Systems, vol. 153, no. 3, pp. 247-252, Jun. 2006.
[30] P. Chen, S. L. Liu, and J. Wu, “A CMOS pulse-shrinking delay element for time interval measurement,” IEEE Transactions on Circuits and Systems, vol. 47, no. 9, pp. 954-958, Sep. 2000.
[31] S. Rajapandian, K. Shepard, P. Haxucha, and T. Karnik, “High-tension power delivery: Operating 0.18μm CMOS digital logic at 5.4V,” IEEE Solid-State Circuits Conference, vol. 1, pp. 298-599, Feb. 2005.
[32] C. T. Chiang and C. Y. Wu, “Implantable neuromorphic vision chips,” IET Electronics Letters, vol. 40, pp. 361-363, Mar. 2004.
[33] I. T. Mohammad, S. Pepe, and W. A. Gregory, “Implantable CMOS-based Stimulator/Reader Design for Retinal Prosthesis,” Conference on Microtechnology in Medicine and Biology, 3rd IEEE/EMBS, pp. 94-97, May. 2005.
[34] P. Nadeau and M. Sawan, “A flexible high voltage biphasic current-controlled stimulator,” IEEE International Symposium on Circuits and Systems, pp. 206-209, Nov. 2006.
[35] G. Lesbros and M. Sawan, “Multiparameters monitoring for long term in-vivo characterization of electrode-tissues contacts,” IEEE International Symposium on Circuits and Systems, pp. 25-28, Dec. 2006.
[36] A. Harb, Y. Hu, M. Sawan, A. Abdelkerim, and M. M. Elhilali, “Low-power CMOS interface for recording and processing very low amplitude signals,” Analog Integrated Circuits and Signal Processing, vol. 39, pp. 39-54, Mon. 2004.
[37] C. C. Wang, C. C. Huang, Y. C. Liu, V. Pikov, and D. Shmilovitz, “A mini-invasive multi-function biomedical pressure measurement system ASIC,” IEEE International Symposium on Circuits and Systems, pp. 2936-2939, May 2010.
[38] W. Qu, S. K. Islam, M. R. Mahfouz, M. R. Haider, G. To, and S. Mostafa, “Microcantilever array pressure measurement system for biomedical instrumentation,” IEEE Sensors Journal, vol. 10, no. 2, pp. 321-330, Feb. 2010.
[39] P. Napolitano, A. Moschitta, P. Carbone, “A survey on time interval measurement techniques and testing methods,” IEEE Transactions on Instrumentation and Measurement, pp. 181-186, May. 2010.
|