博碩士論文 985201043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.227.48.237
姓名 宋榮邦(Song Rongbang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用功率結合變壓器技術於功率放大器暨寬頻E類功率放大器之研製
(The Implementations on Power Amplifier Using Power-Combining Transformer Techniqueand Broadband Class E Power Amplifiers)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文在設計上分為兩部份,第一部份是以CMOS製程實現全積體化功率放大器為目標,使用功率結合變壓器技術達到大功率輸出之功率放大器。第二部份則以設計兩個寬頻E類功率放大器為目標,第一個電路為以CMOS製程實現應用電抗補償網路與負電容補償之寬頻E類功率放大器,第二個電路是以pHEMT製程實現應用雙諧振電抗補償網路之寬頻E類功率放大器。
各電路特性量測如下:第一部份以CMOS製程實現功率結合變壓器技術之功率放大器的電路,增益量測為14.3 dB,1-dB增益壓縮點輸出功率為20.2 dBm,飽和輸出功率為25.3 dBm,功率增進效率為24.2 %。而在第二部份,第一個是以CMOS製程實現應用電抗補償網路與負電容補償之寬頻E類功率放大器的電路,經量測結果顯示在1.6 - 3.4 GHz範圍內由小到高為,功率增益為8.9 - 12.5 dB,功率增進效率為14.4 - 33.7 %,1-dB增益壓縮點輸出功率為14.8 - 18.3 dBm,飽和輸出功率為18.4 - 22.5 dBm;第二個是以pHEMT製程實現應用雙諧振電抗補償網路之寬頻E類功率放大器的電路,量測結果顯示在4.5 - 6 GHz範圍內由小到高的結果為,功率增益為9.7 - 13.3 dB,功率增進效率為37.2 - 50.8 %,1-dB增益壓縮點輸出功率為17 - 19.1 dBm,飽和輸出功率為18.5 - 20.8 dBm。
摘要(英) This thesis studies two categories of power amplifiers which are fully integrated silicon-based power amplifiers using power-combing transformer technique and broadband Class-E power amplifiers. Two Class-E amplifiers were studied in this thesis. The first CMOS broadband Class-E power amplifier was designed by using a negative capacitance to compensate the reactance at the output. The second pHEMT broadband Class-E power amplifier was fulfilled by using dual resonant reactance compensation technique.
The measured results are summarized as follow, the CMOS power amplifier using power-combing transformer technique achieves a power gain of 14.3 dB, an output power at 1-dB gain compression point (P1dB) of 20.2 dBm, a saturation output power (Psat) of 25.3 dBm and a power-added efficiency (PAE) of 24.2 %. The CMOS broadband Class-E power amplifier using negative capacitance compensation technique achieves a bandwidth of 1.6 - 3.4 GHz, a power gain of 8.9 to 12.5 dB, a P1dB of 14.8 to 18.3 dBm, a Psat of 18.4 to 22.5 dBm and a PAE of 14.4 to 33.7 %. The pHEMT broadband Class-E power amplifier achieves a bandwidth of 4.5 - 6 GHz, a power gain of 9.7 to 13.3 dB, a P1dB of 17 to 19.1 dBm, a Psat of 18.5 to 20.8 dBm and a PAE of 37.2 to 50.8 %.
關鍵字(中) ★ 寬頻
★ 功率結合變壓器
★ 功率放大器
關鍵字(英) ★ Power Amplifier
★ Power-Combining Transformer
★ Broadband
論文目次 中文摘要........................................................................................................................ I
英文摘要....................................................................................................................... II
誌謝.............................................................................................................................. III
目錄.............................................................................................................................. IV
圖目錄.......................................................................................................................... VI
表目錄.......................................................................................................................... IX
第一章 緒論 ........................................................................................... 1
1-1 研究動機.................................................................................................... 1
1-2 研究成果.................................................................................................... 1
1-3 章節簡介.................................................................................................... 1
第二章 功率放大器 ............................................................................... 2
2-1 功率放大器簡介........................................................................................ 2
2-2 功率放大器分類........................................................................................ 5
第三章 應用功率結合變壓器技術之功率放大器 ............................... 9
3-1 文獻回顧.................................................................................................... 9
3-2 變壓器原理簡介...................................................................................... 10
3-3 應用功率結合變壓器技術之功率放大器.............................................. 14
3-4 電路量測結果與討論.............................................................................. 17
第四章 寬頻E類功率放大器設計 ..................................................... 28
4-1 文獻回顧.................................................................................................. 28
4-2 理想E類功率放大器簡介 ..................................................................... 29
4-3 應用電抗補償網路之寬頻E類功率放大器簡介 ................................. 32
V
4-3-1 電抗補償網路簡介與設計.......................................................... 32
4-3-2 雙諧振電抗補償網路簡介與設計.............................................. 34
4-4 應用電抗補償網路與負電容補償之CMOS寬頻E類功率放大器 .... 36
4-4-1 應用電抗補償網路與負電容補償之CMOS寬頻E類功率放大器 ......................................................................................................36
4-4-2 電路量測結果與討論.................................................................. 42
4-5 應用雙諧振電抗補償網路之pHEMT寬頻E類功率放大器研製 ...... 49
4-5-1 應用雙諧振電抗補償網路之pHEMT寬頻E類功率放大器 .. 49
4-5-2 電路量測結果與討論.................................................................. 53
第五章 結論與未來研究方向 ............................................................. 57
5-1 結論.......................................................................................................... 57
5-2 未來研究方向.......................................................................................... 58
參考文獻 ................................................................................................... 59
參考文獻 [1] I. Aoki, S. Kee, D. B. Rutledge and A. Hajimiri, “Distributed active transformer: A new power combining and impedance transformation technique,” Microwave Theory and Techniques,IEEE Transactions on, vol. 50, no. 1, January 2002, pp. 316–331.
[2] P. Haldi et al., “A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 5, May 2008, pp. 1054–1063.
[3] O. Lee, J. Han, K. Hwan An, D.H. Lee, K.-S. Lee, S. Hong; C.-H. Lee, “A Charging Acceleration Technique for Highly Efficient Cascode Class-E CMOS Power Amplifiers,” Solid-State Circuits, IEEE Journal of , vol.45, no.10, Oct. 2010, pp.2184-2197.
[4] J.R. Long, “Monolithic transformers for silicon RF IC design,” Solid-State Circuits, IEEE Journal of , vol.35, no.9, Sep 2000, pp.1368-1382.
[5] G. Liu, “Fully Integrated CMOS Power Amplifier,” EECS Department, University of California, Berkeley, 2006.
[6] T. Sowlati, D.M.W. Leenaerts, “A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier,” Solid-State Circuits, IEEE Journal of , vol.38, no.8, Aug. 2003, pp. 1318- 1324.
[7] K. Jongchan, A. Hajimiri, K. Bumman, “A single-chip linear CMOS power amplifier for 2.4 GHz WLAN,” Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International , vol., no., 6-9 Feb. 2006, pp.761-769.
60
[8] G. Liu, P. Haldi, T.-J. K. Liu, A.M. Niknejad, “Fully Integrated CMOS Power Amplifier With Efficiency Enhancement at Power Back-Off, ” Solid-State Circuits, IEEE Journal of , vol.43, no.3, March 2008, pp.600-609.
[9] N. O. Sokal and A. D. Sokal, “Class-E-A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. SC-10, no. 3, Jun. 1975, pp. 168–176.
[10] N. Kumar, C. Prakash, A. Grebennikov, and A. Mediano, “High-efficiency broadband parallel-circuit Class E RF power amplifier with reactance compensation technique,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, Mar. 2008, pp. 604–612.
[11] A. Grebennikov, RF and Microwave Power Amplifier Design. McGraw-Hill, 2005.
[12] A. Grebennikov, “Simple design equations for broadband class E power amplifiers with reactance compensation, ” Microwave Symposium Digest, 2001 IEEE MTT-S International , vol.3, no., 2001, pp.2143-2146 vol.3.
[13] A. Grebennikov and H. Jaeger, “Class E with parallel circuit-A new challenge for high-efficiency RF and microwave power amplifiers,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, Jun. 2002, pp. 1627–1630.
[14] A. Mazzanti, L. Larcher, R. Brama, and F. Svelto, “Analysis of reliability and power efficiency in cascode Class-E PAs,” IEEE J. Solid-State Circuits, vol. 41, no. 5, May 2006, pp. 1222–1229.
[15] C.-Y. Chiu, Ismail M. , “A fully integrated multi-standard power amplifier in 0.18 um CMOS for IEEE 802.11 a/b/g WLANs, ” Circuits and Systems, 2005. 48th Midwest Symposium on , vol.2, no. 7-10,Aug. 2005, pp.1111-1114.
61
[16] P.-C. Huang, K.-Y. Lin, H. Wang, “A 4–17 GHz Darlington Cascode Broadband Medium Power Amplifier in 0.18-um CMOS Technology, ” Microwave and Wireless Components Letters, IEEE , vol.20, no.1, Jan. 2010, pp.43-45.
[17] C. Lu, A.-V.H. Pham, M. Shaw, C. Saint, “Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistors and Capacitance Compensation, ” Microwave Theory and Techniques, IEEE Transactions on , vol.55, no.11, Nov. 2007, pp.2320-2328.
[18] C.-H. Lin, H.-Y. Chang, “A High Efficiency Broadband Class-E Power Amplifier Using a Reactance Compensation Technique, ” Microwave and Wireless Components Letters, IEEE , vol.20, no.9, Sept. 2010, pp.507-509.
[19] Y.-J.E. Chen, L.-Y. Yang, W.-C. Yeh, “An Integrated Wideband Power Amplifier for Cognitive Radio, ” Microwave Theory and Techniques, IEEE Transactions on , vol.55, no.10, Oct. 2007, pp.2053-2058.
[20] J.-W. Lee, L.F. Eastman, K.J. Webb, “A gallium-nitride push-pull microwave power amplifier, ” Microwave Theory and Techniques, IEEE Transactions on , vol.51, no.11, Nov. 2003, pp. 2243- 2249.
[21] Y. Song, S. Lee, E. Cho, J. Lee, S. Nam, “A CMOS Class-E Power Amplifier With Voltage Stress Relief and Enhanced Efficiency, ” Microwave Theory and Techniques, IEEE Transactions on , vol.58, no.2, Feb. 2010, pp.310-317.
[22] 邱煥凱,微波積體電路設計,2007.
[23] 呂紹良, “微波存取全球互通頻段變壓器耦合式功率放大器與電壓控制振盪器暨除頻器之研製,” 中央大學, 碩士論文, 2008.
[24] 陳建中, “使用功率結合變壓器功率放大器與反E類開關式功率放大器研製,” 中央大學, 碩士論文, 2009.
[25] 潘孟偉, “全積體整合矽製程E類功率放大器與Ka頻段pHEMT製程功率放大器研製,” 中央大學, 碩士論文, 2010.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明