博碩士論文 965301005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.140.255.150
姓名 林俊岑(CHUN-TSEN Lin)  查詢紙本館藏   畢業系所 電機工程學系在職專班
論文名稱 應用於生醫電刺激器中動態阻抗之自動調整刺激時間的脈衝寬度調變控制器
(A PWM-Based Auto-Tuning Electric Charge Time Controller for Biomedical Electrical Stimulator)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
神經電刺激在神經功能失調治療和神經損傷康復中具有極其重要的作用。隨著微電子控制技術,電腦技術以及神經科學的發展,神經電刺激已經從傳統的經由皮層電刺激逐漸發展到植入式電刺激階段,目前植入式神經電刺激在治療和控制帕金森病,癲癇,慢性疼痛,聽視覺障礙等多個方面已經取得了較大進展。
本論文的設計為一個控制植入式生理電刺激器的控制器以及電刺激器。電刺激器必須透過電極作為介面才能對神經或肌肉進行電刺激的動作,然而電極-組織介面阻抗可能因電極本體受刺激電流、環境等因素而產生變化,或者受接觸不良、電極大小與材質的影響,例如視網膜是一個弧狀的面,所以不同位置的電極,接觸到組織形成的阻抗值亦會不同,其變異範圍在10KΩ– 100KΩ,所以對於不同的介面阻抗值,必須調整刺激週期使得刺激電荷量可以達到有效的電刺激,此時如果沒有依照阻抗的變化量予以控制增減刺激的電荷量,會導致所需要的刺激量和施予細胞的刺激量出現不相等的現象,並且當刺激量超過某一定程度之後,便有可能產生永久性的細胞傷害。
為了讓電刺激器能滿足阻抗變異的需求,根據阻抗變異與電刺激參數的設定,論文中提出了一個可以根據介面阻抗不同而自動調整刺激時間的控制器,此控制器能依照每次的刺激阻抗不同而自動調整所需要的刺激時間週期,一方面使得刺激的組織得到需要的刺激量,另一方面保護刺激過量導致組織損壞。
電刺激器則是利用產生三倍供應電壓輸出的高電壓輸出級驅動電路,並以台積電0.18μm互補式金氧半導體的標準製程實現,其好處是不需花費其他昂貴的特殊製程,又可以與其他電路整合於同一晶片。
摘要(英) Abstract
Functional Neuromuscular Stimulation plays an important role in the treatment of nervous diseases and rehabilitation of nerve injury. With the rapid development of microelectronic technology, bio-technology and Neuroscience, Functional Neuromuscular Stimulation has been transformed from a traditional electrical stimulation to implantable electrical stimulation, and got great progress in Parkinson, Epilepsy, Chronic Pain and others visual diseases.
This thesis aims to design an electrical stimulator controller for implanted visual prosthesis. The designed electrical stimulator stimulates nerves or muscles using electrodes as the interface. Generally the impedance of electrode-tissue interface may change in the rage of 10KΩ – 100KΩ due to electrode itself such as poor contact, the electrode size, material differences, and stimulus current and environmental factors. It is necessary to adjust the stimulus period to get correct electrical charge, otherwise, will induce the difference between theoretical electrical charge and real electrical charge, and sometimes will damage the cell permanently.
This thesis proposes a new impedance measurement circuit called PWM-based auto-tuning electrical charge timing controller, ahead of the stimulation circuit, to prevent inaccurate electrical charge and protect histiocyte. The width of the digital pulse width modulator can be varied automatically, based on different interface impedances. That means the stimulus period can be auto-adjusted with dynamic impedance to get required electrical charge and best effect.
Besides, the electrical stimulator is designed by a high voltage output driver which can generate three times supply voltage output. The whole design is implemented in TSMC 0.18-μm standard CMOS technology to demonstrate the feasibility of the proposed electrical stimulator. An advantage is that it can be fully integrated with other circuits without extra processing costs.
關鍵字(中) ★ 寬度調變
★ 動態阻抗
★ 電刺激
★ 生醫
關鍵字(英) ★ Biomedical Electrical
★ PWM
★ Stimulator
★ Electric Charge
論文目次 目錄
摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 xi
表目錄 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 2
第二章 植入功能性電刺激系統 3
2.1 植入式電刺激系統的應用 3
2.2 視覺輔具 4
2.3 電刺激器電極模型與電刺激參數 6
2.4 電路架構 10
第三章 自動調整刺激時間控制器電路設計 15
3.1 討論電刺激電荷量與介面阻抗的關係 15
3.2 誤差偵測線路區塊 17
3.2.1 類比切換器( Analog Switch )線路 17
3.2.2 類比緩衝器( Analog Buffer )線路 18
3.3 取樣( Sampling )數學模型與線路區塊 19
3.3.1 取樣( Sampling )數學模型 19
3.3.2 取樣( Sampling )線路區塊 21
3.3.3 延遲觸發( Delay & Trigger )線路 22
3.4 類比脈衝寬度調變( Analog PWM )數學模型與線路區塊 23
3.4.1 類比脈衝寬度調變( Analog PWM )數學模型 24
3.4.2 電壓轉電流( V-I Converter ) & 電容充電( Charger )線路 26
3.4.3 Level-Shift & CLK_In 線路 27
3.4.4 類比比較器( Analog Comparator )線路 29
3.5 Simulink線路架構模擬 30
第四章 高電壓刺激器電路設計 33
4.1 高電壓電刺激器電路架構 33
4.1.1 電晶體的崩潰問題 35
4.1.2 使用Deep-N-well製程 36
4.2 電位轉移器( Level Shifter ) 37
4.3 輸出級驅動電路 41
4.3.1 靜態操作分析 42
4.3.2 暫態操作分析 44
第五章 電路模擬與晶片布局 47
5.1.1 類比緩衝器模擬圖 47
5.1.2 誤差偵測( Error Detect )線路模擬圖 48
5.1.3 延遲觸發( Delay & Trigger )模擬圖 49
5.1.4 取樣線路模擬結果 51
5.1.5 電壓轉電流( V-I Converter )線路模擬 52
5.1.6 類比比較器模擬 54
5.2 整體線路PWM輸出( VPWM_OUT )模擬 56
5.3 刺激電荷量規格 60
5.4 高電壓刺激器( Stimulator )模擬結果 62
5.4.1 電位轉移器模擬結果 62
5.4.2 輸出級驅動電路模擬結果 64
5.5 文獻比較 68
5.6 控制器及刺激器電路之晶片佈局 70
第六章 結論 73
6.1 結論 73
6.2 未來展望 74
參考文獻 77
參考文獻 參考文獻
[1] W. T. Liberson, H. J. Holmquest, D. Scot, and M. Dow, “Functional electrotherapy: stimulation of peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients,” Arch. Phys. Med. Rehabil., vol. 42, pp. 101-105, Feb. 1961.
[2] A. Kralj, T. Bajd, R. Turk, J. Krajnik, and H. Benko, “Gait restoration in paraplegic patients: a feasibility demonstration using multichannel surface electrode FES,” J. Rehabil. R&D, vol. 20, pp. 3-20, Jul. 1983.
[3] C. Sauer, M. Stanacevic, G. Cauwenberghs, and N. Thakor, “Power harvesting and telemetry in CMOS for implanted devices,” IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 2605 -2613, Dec. 2005.
[4] M. Sivapralasam, W. Liu, G. Wang, J. D. Weiland, and M. S. Humayun, “Architecture tradeoffs in high-density microstimulators for retinal prosthesis,” IEEE Transactions on Circuits and Systems, vol. 52, no. 12, pp. 2629-2641, Dec. 2005.
[5] D. R. McNeal, R. J. Nakai, P. Meadows, and W. Tu, “Open-loop control of the freely-swinging paralyzed leg,” IEEE Trans. Biomed. Eng., vol. 36, no. 9, pp.895-905, Sep. 1989.
[6] A. P. Chu, K. Morris, R. J. Greenberg, and D. M. Zhou, “Stimulus induced PH changes in retinal implants,” IEEE Engineering in Medicine and Biology Society Conference, vol. 2, pp. 4160-4162, Sep. 2004.
[7] M. Mahadevappa, J. D. Weiland, D. Yanai, I Fine, R. J. Greenberg, and M. S. Humayun, “Perceptual thresholds and electrode impedance in three retinal prosthesis subjects,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 13, no. 2, pp. 201-206, Jun. 2005.
[8] M. Sivaprakasam, W. Liu, M. S. Humayun, and J. D. Weiland, “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 763-771, Mar. 2005.
[9] L. S. Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas, “A very low-power CMOS mixed-signal IC for implantable pacemaker applications,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2446-2456, Dec. 2004.
[10] J. Georgiou and C. Toumazou, “A 126-μW cochlear chip for a totally implantable system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 430-443, Feb. 2005.
[11] S. K. Kelly and J. Wyatt, “A power-efficient voltage-based neural tissue stimulator with energy recovery,” ISSCC Dig. Tech. Papers, pp. 228-230, Feb. 2004.
[12] M. Ghovanloo, “Switched-capacitor based implantable low-power wireless microstimulating systems,” Proc. ISCAS, pp. 2197-2200, May 2006.
[13] https://www.blindness.org
[14] http://webvision.med.utah.edu
[15] J. D. Weiland and M. S. Humayun, “Intraocular retinal prosthesis,” IEEE Eng. Med. Biol. Mag., vol. 25, pp. 60-66, Sep. 2006.
[16] J. D. Weiland, D. Yanai, M. Mahadevappa, R. Williamson, B. V. Mech, G. Y. Fujii, J. Little, R. J. Greenberg, E. de Juan Jr., and M. S. Humayun, “Electrical stimulation of retina in blind humans,” Proc. 25th Annu. Int. Conf. IEEE EMBS, Cancun, Mexico, vol. 3, pp. 2021-2022, Sep. 2003.
[17] P. Hossain, I. W. Seetho, A. C. Browning, and W. M. Amoaku, “Artificial means for restoring vision,” BMJ, vol. 330, pp. 30-33, Jan. 2005.
[18] K. Cha, K. W. Horch, R. A. Normann, and D. K. Boman, “Reading speed with a pixelized vision system,” J. Opt. Soc. Am. A, vol. 9, no. 5, pp. 673-677, May 1992.
[19] R. W Thompson, G. D. Barnett, M. S. Humayun, and G. Dagnelie, “Facial recognition using simulated prosthetic pixelized vision,” Invest. Ophthalmol. Vis. Sci., vol. 44, no. 11, pp. 5035-5042, Nov. 2003.
[20] J. D. Weiland and M. S. Humayun, “A biomimetic retinal stimulating array: design considerations,” IEEE Eng. Med. Biol. Mag., vol. 24, no. 12, pp. 14-21, Sep. 2005.
[21] Bin He, “Neural Engineering,” vol. 1, no. 1.5.1, Figure 1.22, pp. 29, 2005.
[22] J. J. Sit and R. Sarpeshkar, “A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6nA dc error for 1-mA full scale stimulation,” IEEE Transactions on Biomedical Circuits and System, vol. 1, no. 3, pp. 172-183, Sep. 2007.
[23] S. Franco, “Electric circuits fundamentals,” 1st ed. New York: Oxford, Aug. 1994.
[24] D. Seo, H. Dabag, Y. Guo, M. Mishra, and G. H. McAllister, “High-voltage-tolerant analog circuits design in deep-submicrometer CMOS technologies,” IEEE Transactions on Circuits and Systems, vol. 54, no. 10, pp. 2159-2166, Oct. 2007.
[25] B. Serneels, T. Piessens, M. Steyaert, and W. Dehaene, “A high-voltage output driver in a 2.5-V 0.25-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 576-583, Mar. 2005.
[26] P. Swaroop, A. J. Vasani, and M. Ghovanloo, “A high-voltage output driver for implantable biomedical stimulators and I/O applications,” IEEE International Midwest Symposium on Circuits and Systems, pp. 566-569, Aug. 2006.
[27] S. Rajapandian, K. Shepard, P. Hazucha, and T. Karnik, “High-tension power delivery: Operating 0.18μm CMOS digital logic at 5.4V,” IEEE Solid-State Circuits Conference, vol. 16, no. 4, pp. 298-599, Feb. 2005.
[28] A. J. Annema, G. J. G. M. Geelen, and P. C. de Jong, “5.5-V I/O in a 2.5-V 0.25-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 528-538, Mar. 2001.
[29] LINEAR TECHNOLOGY, LT1466L variable current Source circuit
[30] Li-Jen Liu, Yeong-Chau Kuo, and Wen-Chieh Cheng, “Analog PWM and Digital PWM Controller IC for DC/DC Converters” , IEEE 2009 Fourth International Conference on Innovative Computing, Information and Control, pp. 904-907, 2009
[31] Juing-Huei Su, Chien-Ming Wang, Jiann-Jong Chen, Jing-Da Lee and Tzu-Ling Chen,“Interactive Simulation and Verification SIMULINK Models for DC-DC Switching Converter Circuits using PWM Control ICs,” IEEE Power Electronics and Drives Systems, pp.1256-1261, Nov. 2005
[32] P. E. Allen and D. R. Holberg, “CMOS analog circuit design,” 2nd ed. New York: Oxford, Jan. 2002.
[33] D. Seo, H. Dabag, Y. Guo, M. Mishra, and G. H. McAllister, “High-voltage-tolerant analog circuit design in deep-submicrometer CMOS technologies,” IEEE Trans. Circuits Syst., vol. 54, no. 10, pp. 2159-2166, Oct. 2007.
[34] B. Serneels, T. Piessens, M. Steyaert, and W. Dehaene, “A high-voltage output driver in a 2.5-V 0.25-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 576-583, Mar. 2005.
[35] http://www.tsmc.com/download/enliterature/html-newsletter/April04/Quality &Reliability /index.html
[36] N. Dommel, Y. T. Wong, P. J. Preston, T. Lehmann, N. H. Lovell, and G. J. Suaning, “The design and testing of an epi-retinal vision prosthesis neurostimulator capable of concurrent parallel stimulation,” Proc. 28th Annu. Int. Conf. IEEE EMBS, New York, USA, vol. 12, pp. 4700-4709, Sep. 2006.
[37] M. Ortmanns, N. Unger, A. Rocke, M. Gehrke, and H. J. Tietdke, “A 0.1mm2, digitally programmable nerve stimulation pad cell with high-voltage capability for a retinal implant,” ISSCC Dig. Tech. Papers, pp. 89-91, Feb. 2006.
[38] S. Ethier, M. Sawan, E. M. Aboulhamid, and M. E. Gamal, “A ±9V fully integrated CMOS electrode driver for high-impedance microstimulation,” Proc. 52nd IEEE Int. Midwest Symp. Circuits Syst., Cancun, Mexico, pp. 192-195, Aug. 2009.
[39] P. Nadeau and M. Sawan, “A flexible high voltage biphasic current-controlled stimulator,” Proc. IEEE BioCAS, London, UK, pp. 206-209, Nov. 2006.
[40] Y. Yao, M. N. Gulari, J. A. Wiler, and K. D. Wise, “A microassembled low-profile three-dimensional microelectrode array for neural prosthesis applications,” IEEE J. Microelectromech. Syst., vol. 6, no. 4, pp. 977-988, Aug. 2008.
[41] W. Qu, S. K. Islam, M. R. Mahfouz, M. R. Haider, G. To, and S. Mostafa, “Microcantilever array pressure measurement system for biomedical instrumentation,” IEEE Sensors Journal, vol. 10, no. 2, pp. 321-330, Feb. 2010.
指導教授 薛木添(MUH-TIAN SHIUE) 審核日期 2011-5-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明