博碩士論文 91541003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:18.118.9.7
姓名 詹勝仲(Sheng-Chung Chan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 線性系統與T-S模糊系統的強健控制器設計
(Design of Robust Controller for Linear Systems and T-S Fuzzy Systems)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統
★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用
★ 四軸飛行器之偵測應用及其無線充電系統之探討★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
★ 模糊控制與灰色預測應用於隧道型機械手臂之分析★ 模糊滑動模態控制器之設計及應用於非線性系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要在探討線性系統和模糊系統的強健控制器的設計,其中包含了系統參數的不確定性以及相關性能的討論。大部分學者對於強健控制的設計都使用李亞普諾夫(Lyapunov)穩定準則作為依據,對於線性系統的狀態回授設計混合 / 的條件下使用線性矩陣不等式(Linear Matrix Inequality - LMI)求解強健的控制器增益,通常都會得到不錯的結果。但對於輸出回授的的設計,會產生非凸集合(non-convex)問題,使得LMI的求解必須做更多的假設。於是本論文的第二章,利用基因演算法(Genetic Algorithm-GA)搜尋最佳的控制器增益應用於輸出回授系統以及混合 / 性能的最小化問題,這個建議的方法並不需要做任何的假設,所以基於GA的強健控制器的增益設計優於LMI演算法。
為了擴展強健控制設計的觀念,本論文也探討非線性系統控制的問題,而非線性系統又可透過Takagi-Sugeno (T-S) 模糊模組的型式來近似非線性系統,進而利用LMI演算法探討其穩定性和控制器的設計。而T-S模糊系統的設計主要採用平行分配補償 (Parallel Distributed Compensation - PDC) 之設計觀念,若複雜的系統將導致T-S模糊的規則數太多,進而造成LMI無法求得共同的正定矩陣P的窘境。因此在第三章建議使用強健控制的觀念,使得PDC的設計少了交叉項的影響,大大的降低LMI演算法的規則數,但是此強健控制器的觀念不容易求得共同的正定矩陣P,因此提出以族群型多項 式 (Family of Polynomials) 的穩定理論取代李亞普諾夫的穩定法則,利用混合型的特徵值 (eigenvalues) 來取代混合型的權重,最後透過根軌跡 (Root Locus) 的作圖觀念來判斷T-S模糊系統的穩定度。此方法的優點為不需求得共同正定矩陣P,但缺點為T-S模糊模型必須具備一定的形式和限制。於是本論文在第四章提出模糊區域觀念的設計,來改善上述的問題。
當模糊模型的規則數變多時,此時LMI演算法的規則數也相對的增加,為了降低規則且增加求解的機率,於是提出T-S模糊區域概念,設計強健性的模糊控制器。基於上述模糊區域設計的觀念,將T-S模糊系統擴展至時間延遲的非線性系統。
摘要(英) The motivation of this dissertation attempts to apply the robust control technologies to nonlinear controller design, for which the nonlinear system can be approximated as a T-S fuzzy system. First, a novel idea is introduced to solve the robust controller which has to satisfy performance requirements. Next, we deal with the T-S fuzzy model with the robust controller design technologies. The fuzzy region concept is used to discuss the complex nonlinear system.
In order to extend the application of robust controller, this study also explores the nonlinear systems as well as their T-S fuzzy models. In addition, we will manage to reduce the rules of the controller such that the interference effect in PDC-based controller can be cancelled. But the robust controller is not easy to find the common positive-definite matrix P. This systematic method is developed by root locus technique to check the stability. The advantage of this method doesn’t need to find the common positive-definite matrix P to satisfy Lyapunov stability criterion, yet the methodology has some restrictions. Therefore, a region-based concept is presented to improve the problem.
The control approach is proposed incorporating fuzzy region concept and robust control techniques to stabilize the general T-S fuzzy models with simple design processes. It was emphasized that the proposed idea can eliminate the interaction between the subsystems. Also, this approach is able to reduce the control rules and the total number of LMIs. At last, we will extend it to the time-delay problem for T-S fuzzy systems.
關鍵字(中) ★ 強健控制
★ T-S模糊系統
★ 線性系統
★ 基因演算法
關鍵字(英) ★ linear systems
★ GA
★ robust control
★ T-S fuzzy systems
論文目次 Abstract
Contents i
Nomenclature iii
Acronyms v
List of Figures vi
List of Tables viii
Chapter 1 INTRODUCTION 1
1.1 Historical Background 1
1.2 Literature Reviews 7
1.3 Motivations and Purposes 12
1.4 Contributions 14
1.5 Organization 14
Chapter 2 DESIGN OF ROBUST CONTROLLER WITH GA-BASED FOR LTI SYSTEMS 16
2.1 Introduction 16
2.2 Preliminaries and Problem Descriptions 17
2.2.1 Descriptions and Performances for Polytopic Model 17
2.2.2 Stable Controller Design via Linear Matrix Inequalities 19
2.3 Design Concept and Preliminaries 21
2.3.1 Generalized edge theorem and Hurwitz testing matrix 21
2.3.2 Average Performance Concept 24
2.4 Main Results 25
2.4.1 Hierarchical Robust Stability Conditions for 25
2.4.2 GA-based Robust Controller Seeking Algorithm 27
2.5 A Numerical Example 32
2.6 Summary 39
Chapter 3 DESIG OF ROBUST CONTROLLER FOR T-S FUZZY MODELS 40
3.1 Introduction 40
3.2 Typical T-S Fuzzy Systems and Its Stability Conditions 41
3.2.1 Descriptions of Typical T-S Fuzzy Models 41
3.2.2 PDC-based State Feedback Fuzzy Controller Design 43
3.2.3 Stable Controller Design via Linear Matrix Inequalities 46
3.3 Design Concept and Preliminaries 49
3.4 Main Results 49
3.4.1 Robust Control Gain of T-S Fuzzy Models 49
3.4.2 The Stability Problem of Robust Controller 51
3.4.3 Check of Stability with Polynomial Method 52
3.5 A Numerical Example 55
3.6 Summary 60
Chapter 4 DESIGN OF ROBUST CONTROLLER WITH FUZZY REGION Concept 61
4.1 Introduction 61
4.2 Regional-based T-S Fuzzy System and Its Stability Conditions 62
4.2.1 Descriptions of Regional-based T-S Fuzzy Model 62
4.2.2 Regional-based Fuzzy Controller Design 65
4.3 Problem Descriptions 69
4.3.1 Extending the Region Concept 69
4.3.2 Regional-based T-S Fuzzy System with Delay-Time 72
4.4 Main Results 73
4.4.1 Stability Analysis of Open-loop Fuzzy System with Time-Delay 73
4.4.2 Stability Analysis of Closed-loop Fuzzy System with Time-Delay 75
4.4.3 Synthesis of Regional-based State Feedback Fuzzy Control via LMI/GA Algorithms 79
4.5 A Numerical Example 82
4.6 Summary 89
Chapter 5 CONCLUSIONS AND RECOMMENDATIONS 89
References 92
Publication List 101
參考文獻 [1] T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man, Cybern, Vol. 15, No. 1, pp. 116-132, 1985.
[2] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, NY: John Wiley & Son Inc., 2001.
[3] K. Tanaka and M. Sugeno, "Stability analysis and design of fuzzy control-systems," Fuzzy Sets Syst., Vol. 45, No. 2, pp. 135-156, 1992.
[4] H. O. Wang, K. Tanaka, and M. F. Griffin, "Parallel distributed compensation of nonlinear Systems by Takagi-Sugeno Fuzzy Model," Proc. Fuzzy-IEEE/IFES, pp. 531-538, 1995.
[5] H. O. Wang, K. Tanaka, and M. F. Griffin, "An analytical framework of fuzzy modeling and control of nonlinear Systems: Stability and Design Issues," Proc. American Control Conference, pp. 2272-2276, 1995.
[6] M. Sugeno and G. T. Kang, "Fuzzy modeling and control of multilayer incinerator," Fuzzy Sets Syst., No. 18, pp. 329-346, 1986.
[7] K. Tanaka and M. Sugeno, "Stability analysis of fuzzy systems using Lyapunov’s direct method," Proc. NAFIPS, pp. 133-136, 1990.
[8] H. O. Wang, K. Tanaka, and M. F. Griffin, "An approach to fuzzy control of nonlinear system: stability and design issues," IEEE Trans. Fuzzy Syst., Vol. 4, No. 1, pp. 14-23, 1996.
[9] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA: SIAM, 1994.
[10] S. M. Wu, H2/Hinf Regional Controller Design for Takagi-Sugeno Fuzzy Region Systems, Ph. D. Dissertation, Department of Electrical Engineering, National Central University, Jhongli, Taiwan, 2008.
[11] V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis, "Static Output Feedback-A Survey," Automatica, Vol.33, No.2, pp.125-137, 1997.
[12] A. Weinmann, Uncertain Models and Robust Control, New York: Springer-Verlag, 1992.
[13] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox, The Math Work Inc., 1995.
[14] R. E. Skelton, A Unified Algebraic Approach to Linear Control Design, London: Taylor & Francis, 1998.
[15] F. Leibfritz, "An LMI-Based Algorithm for Designing Suboptimal Static H-2/H- Infinity Output-Feedback Controllers," SIAM J. Contr. Optimizat., Vol.39, No.6, pp.1711-1735, 2001.
[16] B. R. Barmish, New Tools for Robustness of Linear Systems, New York: Macmillan, 1994.
[17] Y. Boers, "Average Performance Control by Static Output-Feedback," IEE Proc. Contr. Theory Appl., Vol.149, No.3, pp.188-192, 2002.
[18] B. S. Chen and Y. M. Cheng, "A structure-specified H-2/H-Infinity optimal control design for practical applications: a genetic approach," Control Systems Technology, IEEE Transactions on, Vol.6, No.6, pp.707-718, 1998.
[19] B. S. Chen, Y. M. Cheng, and C. H. Lee. , "A genetic approach to mixed H-2/H-Infinity optimal PID control," Control Systems Magazine, IEEE, Vol.15, No.5, pp.51-60, 1995.
[20] K. F. Man, Genetic Algorithms for Control and Signal Processing, New York: Springer, 1997.
[21] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Massachusetts: Addison-Wesley Inc., 1989.
[22] C. L. Chen, P. C. Chen, and C. K. Chen, "Analysis and design of fuzzy control system," Fuzzy Sets Syst., Vol. 57, pp. 125-140, 1993.
[23] X. Ban, X. Z. Gao, X. Huang, and A. V. Vasilakos, "Stability analysis of the simplest Takagi-Sugeno fuzzy control system using circle criterion," Inf. Sci., Vol. 20, pp. 4387-4409, 2007.
[24] H. Y. Chung and S. C. Chan, "Analysis and design of fuzzy control systems using polynomial methods," International Journal of Innovative Computing, Information and Control, Vol.5, No.11, 2009.
[25] H. Y. Chung and S. C. Chan, "An Alternate Approach to the Analysis of a T-S Fuzzy Model,” International Journal of Innovative Computing, Information and Control, Vol.4, No.11, 2008.
[26] J. Daafouz, P. Riedinger, and C. Lung, "Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach," IEEE Trans. Autom. Control, Vol. 47, No. 11, pp. 1883-1887, 2002.
[27] K. Tanaka, M. Iwasaki, and H. O. Wang, "Switching control of an R/C hovercraft: stabilization and smooth switching," IEEE Trans. Syst., Man,Cybern. B,Cybern.,Vol. 31, No. 6, pp. 853-863, Dec. 2001.
[28] H. Ohtake, K. Tanaka, and H. O. Wang, "A construction method of switching Lyapunov function for nonlinear systems," in Proc. IEEE Int. Conf. Fuzzy Systems, Honolulu, HI, pp. 221-226, 2002.
[29] Z. H. Xiu and G. Ren, "Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems," Fuzzy Sets syst., Vol. 151, pp. 119-138, 2005.
[30] J. Dong and G. H. Yang, "State feedback control of continuous time T-S fuzzy systems via switched fuzzy controllers," Inf. Sci., Vol. 178, pp. 1680-1695, 2008.
[31] C. C. Cheng and S. H. Chien, "Adaptive sliding mode controller design based on T-S fuzzy system models," Automatica, Vol. 42, pp. 1005-1010, 2006.
[32] J. H. Kim, C. H. Hyun, E. Kim, and M. Park, "Adaptive synchronization of uncertain chaotic systems based on T-S fuzzy model," IEEE Trans. Fuzzy Syst., Vol. 37, pp. 359-369, 2007.
[33] K. Tanaka, T. Ikeda, and H. O. Wang, "Fuzzy regulators and fuzzy observers - relaxed stability conditions and LMI-based designs," IEEE Trans. Fuzzy Syst., Vol. 6, No. 2, pp. 250-265, 1998.
[34] T. Taniguchi, K. Tanaka, H. Ohtake, and H. O. Wang, "Model construction, rule reduction, and robust compensation for generalized form of takagi-sugeno fuzzy-systems," IEEE Trans. Fuzzy Syst., Vol. 9, No. 4, pp. 525-538, 2001.
[35] C. C. Sun, S. M. Wu, H. Y. Chung, and W. J. Chang, "Design of Takagi-Sugeno fuzzy region controller based on rule reduction, robust control, and switching concept," ASME, J, Dynamic Systems, Measurement and Control, Vol. 129, No. 2, pp. 163-170, 2007.
[36] S. M. Wu, C. C. Sun, H. Y. Chung, and W. J. Chang, "Discrete H2/Hinf nonlinear controller design based on fuzzy region concept and takagi-sugeno fuzzy framework," IEEE Trans. Circuit Syst. Part:I, Vol. 53, No. 12, pp. 2838-2848, 2006.
[37] S. J. Wu and C. T. Lin, "Discrete-time optimal fuzzy controller design: global concept approach," IEEE Trans. Fuzzy Syst., Vol. 10, No. 1, pp. 21-38, 2002.
[38] B. S. Chen, C. S. Tseng, and H. J. Uang, "Mixed H2/Hinf fuzzy output-feedback control design for nonlinear dynamic-systems - an LMI approach," IEEE Trans. Fuzzy Syst., Vol. 8, No. 1, pp. 249-265, 2000.
[39] S. Zhou, and G. Feng, "Generalised H2 controller synthesis for uncertain discrete-time fuzzy systems via basis-dependent Lyapunov functions," IET Control Theory Applications, Vol. 153, No. 1, pp. 74-80, 2006.
[40] C. L. Hwang, and S. Y. Han, "Fuzzy mixed optimization-based decentralized model reference control and application to Piezo-driven XY table systems," IEEE Trans. Fuzzy Syst., Vol. 15, No. 2, pp. 145-160, 2007.
[41] Y. Y. Cao and P. M. Frank, "Robust Hinf disturbance attenuation for a class of uncertain discrete-time fuzzy-systems," IEEE Trans. Fuzzy Syst., Vol. 8, No. 1, pp. 406-415, 2000.
[42] Z. Shaosheng, J. Lam, and X. Z. Wei, "Control design for fuzzy systems based on relaxed nonquadratic stability and Hinf performance conditions," IEEE Trans. Fuzzy Syst., Vol. 15, No. 2, pp. 188-199, 2007.
[43] X. Shengyuan, and J. Lam, "Robust Hinf control for uncertain discrete-time-delay fuzzy systems via output feedback controllers," IEEE Trans. Fuzzy Syst., Vol. 13, No. 1, pp. 82-93, 2005.
[44] W. J. Chang and C. C. Sun, "Constrained fuzzy controller-design of discrete Takagi-Sugeno fuzzy models," Fuzzy Sets Syst., Vol. 133, No. 1, pp. 37-55, 2003.
[45] W. J. Chang and S. M. Wu, "Continuous fuzzy controller design subject to minimizing control input energy with output variance constraints," European Journal of Control, Vol. 11, No. 3, pp. 269-277, 2005.
[46] E. Kim and H. Lee, " New approaches to relaxed quadratic stability condition of fuzzy control systems," IEEE Trans. Fuzzy Syst., Vol. 8, No. 5, pp. 523-533, 2000.
[47] G. Feng, "A survey on analysis and design of model-based fuzzy control systems, " IEEE Trans. Fuzzy Syst., Vol. 14, pp. 676-697, 2006.
[48] K. Tanaka, T. Hori, and H. O. Wang, "A multiple Lyapunov function approach to stabilization of fuzzy control systems," IEEE Trans. Fuzzy Syst., Vol. 11, No. 4, pp. 582-589, 2003.
[49] G. Feng and D. Sun, "Generalized H2 controller synthesis of fuzzy dynamic-systems based on piecewise Lyapunov functions," IEEE Trans. Circuit Syst. Part: I, Vol. 49, No. 12, pp. 1843-1850, 2002.
[50] L. Wang, G. Feng, and T. Hesketh, "Piecewise generalised H2 controller synthesis of discrete-time fuzzy systems," IET Control Theory Applications, Vol. 151, No. 5, pp. 554-560, 2004.
[51] B. J. Rhee and S. Won, "A new Lyapunov function approach for a Takagi- Sugeno fuzzy control system design," Fuzzy Sets Syst., Vol. 157, pp. 1211-1228, 2006.
[52] W. J. Wang and C. H. Sun, "A relaxed stability criterion for T-S fuzzy discrete systems," IEEE Trans. Syst. Man. Cybern. Part: B, Vol. 34, No. 5, pp. 2155-2158, 2004.
[53] C. H. Sun and W. J. Wang, "An improved stability criterion for T-S fuzzy discrete systems via vertex expression," IEEE Trans. Syst. Man. Cybern. Part: B, Vol. 36, No. 3, pp. 672-678, 2006.
[54] K. Tanaka, H. Ohtake, and H. O. Wang, "A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions," IEEE Trans. Fuzzy Syst., Vol. 15, pp. 333-341, 2007.
[55] H. K. Lam and F. H. F. Leung, "LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi-Sugeno’s form," IEEE Trans. Syst. Man. Cybern. B, Cybern., Vol. 37, pp. 1396-1406, 2007.
[56] H. K. Lam, "Stability analysis of T-S fuzzy control systems using parameter-dependent Lyapunov function," IET Control Theorem Appl., Vol. 3, pp. 750-762, 2009.
[57] C. Scherer, P. Gahinet, and M. Chilali, "Multiobjective output-feedback control via LMI-optimization," IEEE Trans. Automat. Contr., Vol.42, No.7, pp.896-911, 1997.
[58] Y. C. Soh and Y. K. Foo, "Generalized edge theorem," Syst. Contr. Lett., Vol. 12, pp. 219-224, 1989.
[59] Y. K. Foo and Y. C. Soh, "Characterization of Zero Locations of Polytopes of Real Polynomials," IEEE Trans. Automat. Contr., Vol.37, No.8, pp.1227-1230, 1992.
[60] V. Hatzikos, J. Hatonen, and D. H. Owens , "Genetic Algorithms in Norm-Optimal Linear and Non-Linear Iterative Learning Control," Int. J. Contr., Vol.77, No.2, pp.188-197, 2004.
[61] Y. L. Abdel-Magid and M. A. Abido , "Optimal Multiobjective Design of Robust Power System Stabilizers Using Genetic Algorithms," IEEE Trans. Power Syst., Vol.18, No.3, pp.1125-1132, 2003.
[62] J. Suzuki, "A Markov Chain Analysis on Simple Genetic Algorithms," IEEE Trans. Syst. Man and Cybernet., Vol.25, No.4, pp.655-659, 1995.
[63] B. Wie and D. S. Bernstein, "Robust Control Design for a Benchmark Problem," J. Guid. Contr. Dynamics, Vol.15, No.5, pp.1057-1059, 1992.
[64] B. S. Chen and Y. M. Cheng, "A structure-specified H-2/H-Infinity optimal control design for practical applications: a genetic approach," Control Systems Technology, IEEE Transactions on, Vol.6, No.6, pp.707-718, 1998.
[65] C. Bor-Sen, C. Yu-Min, and L. Ching-Hsiang , "A genetic approach to mixed H-2/H- Infinity optimal PID control," Control Systems Magazine, IEEE, Vol.15, No.5, pp.51-60, 1995.
[66] H. J. Lee, J. B. Park, and G. Chen, "Robust fuzzy control of nonlinear systems with parametric uncertainties," IEEE Trans. Fuzzy Syst., Vol. 9, pp. 369-378, 2001.
[67] R. H. Cannon, Dynamics of physical systems, New York: McGraw-Hill, 1967.
[68] A. Ichikawa, et al., Control hand book, Tokyo, Japan: Ohm-sha, 1993.
[69] L. Wang and G. Feng, "Piecewise H∞ controller design of discrete-time fuzzy systems," IEEE Trans. Syst., Man., Cybern. Part: B, Vol. 34, pp. 682-686, 2004.
[70] H. Zhang and C. Dang, "Piecewise H∞ controller design of uncertain discrete-Time fuzzy systems with time delays," IEEE Trans. Fuzzy Syst., Vol. 16, pp. 1649-1655, 2008.
[71] W. M. Haddad and D. S. Bernstein, "Controller design with regional pole constraints," IEEE Trans. on Automatic Control, Vol. 37, pp. 54-69, 1992.
[72] Y. Zhang and P. A. Heng, "Stability of fuzzy control systems with bounded uncertain delays, " IEEE Trans. Fuzzy Syst., Vol. 10, pp. 92-97, 2002.
[73] B. Chen and X. P. Liu, "Delay-dependent robust H∞ control for T–S fuzzy systems with time delay, " IEEE Trans. Fuzzy Syst., Vol. 13, pp. 544-556, 2005.
[74] H. B. Zhang, C. G. Li, and X. F. Liao, "Stability analysis and H∞ controller design of fuzzy large-scale systems based on piecewise Lyapunov functions, " IEEE Trans. Syst., Man, Cybern. Part: B, Vol. 36, pp. 685-698, 2006.
[75] L. Wu, X. Su, and P. Shi, "A new approach to stability analysis and stabilization of discrete-time T-S fuzzy time-varying delay systems, " IEEE Trans. Syst., Man, Cybern. Part: B, Vol. 41, pp. 273-286, 2011.
[76] M. A. Abramson, Genetic Algorithm and Direct Search Toolbox, Natick, MA: The Math Work Inc., 2004.
指導教授 鍾鴻源(Hung-Yuan Chung) 審核日期 2011-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明