博碩士論文 955301029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.205.67.119
姓名 魏湘云(Hsiang-Yun Wei)  查詢紙本館藏   畢業系所 電機工程學系在職專班
論文名稱 應用在DDR4動態隨機存取記憶體之低時脈 抖動延遲鎖定迴路
(A Low Jitter Delay-Locked-Loop Applied onDDR4 DRAM )
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
此論文是基於對穩定且低抖動的內嵌式同步電路晶片的需求而生。
隨著CMOS製程技術的進步與突破,電子產品的操作頻率一再提升,其中所使用到的記憶體的複雜度及時脈訊號頻率均迅速增加,因此,系統內部同步時脈訊號之可靠度便愈來愈重要。目前動態隨機存取記憶體( Dynamic Random Access Memory )已發展至DDR4的階段,時脈速度升高至1.6Gbps~3.2Gbps,在此高速的操作下,時脈穩定成為一個必需的設計重點,由於在時脈抖動及回路穩定性上,延遲鎖定迴路(Delay-locked loop)都具有良好的表現,使得延遲鎖定迴路比鎖相迴路(Phase-locked loop)更廣泛地應用在記憶體的時脈誤差調整電路上。
在本論文中提出一個具備電流匹配的電流幫浦及晶片內建電源穩壓器的延遲鎖定迴路,電路使用TSMC 90nm 1P/9M CMOS製程實現晶片,工作電壓在1.2V及I/O 2.5V,延遲鎖定迴路的輸入參考頻率為1.6GHz,在靜電源供應下最大時脈抖動(peak to peak jitter)為1.68ps ,而在有10MHz、+/-10%電壓振幅的隨機雜訊干擾下的電源供應,經過穩壓器後的時脈抖動為18.68ps,小於輸出時脈週期的2.9%,延遲迴路本身功率消耗為20.58mW,晶片面積為0.5625mm2。
摘要(英) Abstract
The motivation of this work is the demand for a stable and low-jitter synchronous circuit on intra-chip. The operation frequencies of electronic products constantly increase along with the development and breakthrough of the CMOS process technology. The complexity of design and frequency of clock in memory has also been rapidly increasing. Thus, the reliability of synchronous circuits becomes more and more essential. Dynamic Random Access Memory (DRAM) has progressed to DDR4, reaches data rate 1.6Gbps~3.2Gbps. The stability of clock becomes an essential part of design. The delay-locked loop (DLL) offers better jitter and stability performance than the phase-locked loop (PLL). So, it is more regularly applied on DRAM as a synchronous circuit than PLL.
This work presents a technique that includes a current-matching charge pump and an on-chip supply regulator in the delay-locked loop (DLL). The design is implemented by TSMC CMOS 1P/9M 90nm technology with a nominal supply voltage 1.2V and I/O supply voltage 2.5V. The input frequency is at 1.6GHz. Peak to peak jitter 1.68ps with a quiet supply, and 18.68ps under random noise of 10MHz, +/-10% amplitude on the supply after regulator, which is less than 11.5% of output clock cycle. DLL power dissipation is 20.58mW. Chip area is 0.5625mm2.
關鍵字(中) ★ 延遲鎖定迴路
★ 電流幫浦
★ 低抖動
關鍵字(英) ★ low jitter
★ Delay-locked-loop
★ charge pump
論文目次 Contents
Table of Contents i
List of Figures iii
List of Tables v
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Theory and Structure of Delay-Locked Loop 3
2.1 Architecture of Frequency Synchronizer . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 PLL-based Frequency Synchronizer . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 DLL-based Frequency Synchronizer . . . . . . . . . . . . . . . . . . . . . 4
2.2 Structure of Delay-Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Phase Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Charge Pump and Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Voltage Control Delay Line . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Theoretical Analysis of DLL Transfer Function . . . . . . . . . . . . . . . . . . . 9
2.3.1 Locking Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 DLL Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 System Behavior Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Jitter in High Speed Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Power Supply Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Common Jitter Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Other Sources of Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 The Design of Proposed Synchronous Circuit 17
3.1 Proposed Architecture and Circuit Description . . . . . . . . . . . . . . . . . . . . 17
3.2 Phase Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Design Consideration of the Current Mismatch Effect on Charge Pump . . . . . . . 20
3.3.1 Nonideal Situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Voltage to Voltage Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Voltage Control Delay Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Low Dropout Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.2 Design Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.3 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Achievement and Experimental Results 35
4.1 Circuit Layout Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.1 Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Symmetrical Route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Routing Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.4 Symmetrical Device Placement and Dummy device . . . . . . . . . . . . . 38
4.1.5 Supply Power Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.6 Substrate Noise Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Circuit Simulation Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Simulation condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Behavior Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Measurement Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Conclusion 51
Bibliography 53
參考文獻 Bibliography
[1] G. Chien and P. R. Gray, "A 900MHz local oscillator using a DLL-based frequency multiplier
technique for PCS applications", IEEE J. Solid-State Circuits, vol. 35, no12, pp. 1996-1999,
Dec. 2000
[2] Shen-Iuan Liu, Ching-Yuan Yang, “Phase-Locked Loop,” Tsang Hai, 2006.
[3] Chi-Nan Chuang and Shen-Iuan Liu,“A 20-MHz to 3-GHz Wide-Range Multiphase Delay-
Locked Loop” IEEE Transactions On Circuits And Systems-Ii: Express Briefs, VOL. 56, NO.
11, NOVEMBER 2009
[4] Hsiang-Hui Chang, Jung-Yu Chang, Chun-Yi Kuo, and Shen-Iuan Liu,“A 0.7-2-GHz Self-
Calibrated Multiphase Delay-Locked Loop“ IEEE J. Solid-State Circuits, VOL. 41, NO. 5,
MAY 2006
[5] Alan Hastings, ”The Art of Analog Layout" Prentice Hall, 2000.
[6] B.-G. Kim, et al., "A DLL with jitter reduction techniques for DRAM interfaces," in Proc.
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Paper, 2007, pp. 496-497.
[7] F. Lin, R. A. Royer, B. Johnson, and B. Keeth,"A wide-range mixed-mode DLL for a combination
512 Mb 2.0 Gb/s/pin GDDR3 and 2.5 Gb/s/pin GDDR4 SDRAM,"IEEE J. Solid-State
Circuits, vol. 43, no. 3, pp. 631-641, Mar, 2008.
[8] W.-Y. Yun, et al.,"A 0.1-to-1.5 GHz 4.2 mW all-digital DLL with dual duty-cycle correction
circuit and update gear circuit for DRAM in 66 nm CMOS technology,"in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech. Paper, 2008, pp. 282-289.
[9] H.-W. Lee, et al.,"A 1.6V 3.3Gb/s GDDR3 DRAM with dual-mode phase- and delay-locked
loop using power-noise management with unregulated power supply in 54nm CMOS,"in
Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Paper, 2009, pp. 140-141.
[10] W.-J. Yun, H.-W. Lee, D. Shin, and S. Kim,"A 3.57 Gbs Low Jitter All-Digital DLL With
Dual DCC Circuit for GDDR3 DRAM in 54-nm CMOS Technology,"accepted for publish,
IEEE Trans. on VLSI, 2010
[11] Y.-S. Kim, S.-K. Lee, H.-J. Park, and J.-Y. Sim,"A 110 MHz to 1.4 GHz locking 40-phase
all-digital DLL,"IEEE J. Solid-State Circuits, vol. 46, no. 2, pp. 435-444, Feb, 2011.
[12] Y. H. Tu, "A Wide Range Dealy-Locked Loop with Phase Error Calibration and Frequency
Multiplier,"Master Thesis, National Central University, 2010
[13] M. C. Wu, "Delay-Locked Loop with Static Phase Error Calibration Based on Wide-Range
Operation,"Master Thesis, National Central University, 2008
[14] C. Y. Chen, "The Multiphase Digital-DLL for DDR2 Memory Application,"Master Thesis,
National Central University, 2008
[15] J. S. Huang, "A 0.5-V 1.25-GHz Phase-Locked Loop,"Master Thesis, National Central University,
2008
[16] Y. L. Lo, "Design of Delay-Locked Loop with Fast-Lock andWide-Range Operation,"Master
Thesis, Tamkang University, 2003
[17] S. H. Weng, "Study on the Improvement of Current-Matching Property of the Charge Pump
for Phase-Locked Loops,"Master Thesis, Feng Chia University, 2010
[18] S. S. Sheu, "Design and Implementation of Low-Power and High-Noise-Immunity Phase-
Locked Loop,"Master Thesis, Tamkang University, 2002
[19] S. M. Chang, "Design and Analysis of Multiphase DLL-based Frequency Multipliers,"Master
Thesis, National Central University, 2005
[20] C. L. Wu, "All-Digital Arbitrary Duty-Cycle Synchronous Mirror Delay Circuits,"Master
Thesis, National Central University, 2006
[21] T. H. Sheu, "A Low Spurious Tones of 5-GHz CMOS Frequency Synthesizer with New
Current-Match Charge Pump,"Master Thesis, National Chiao Tung University, 2004
[22] T. H. Sheu, "A Low Spurious Tones of 5-GHz CMOS Frequency Synthesizer with New
Current-Match Charge Pump,"Master Thesis, National Chiao Tung University, 2004
[23] C. H. Chen, "A Fast-Locking and Low-Jitter All Digital Delay Locked Loop,"Master Thesis,
National Chung Cheng University, 2003
[24] L. C. Cho, "Design of CMOS DLL and Data Recovery Circuit,"Master Thesis, National
Taiwan University, 2003
[25] B. F. Lin, "AWide-Range Multi-Phase DLL with phase insertion architecture,"Master Thesis,
National Taiwan University, 2010
[26] C. T. Lu, "Design and Implementation of Low Voltage CMOS Phase-Locked-Loop and
Delay-Locked-Loop,"Master Thesis, National Taiwan University, 2007
[27] G. K. Deng, "Implementation and Application of CMOS DLL/PLL,"Master Thesis, National
Taiwan University, 2001
[28] C. H. Suen, "Design of CMOS DLL and 1.25Gb/s Data Recovery,"Master Thesis, National
Taiwan University, 2002
[29] C.W. Lin, "Design and Realization of Analog Delay-Locked Loops,"Master Thesis, National
Taiwan University, 2001
[30] Ankur Agrawal, “Design of High Speed I/O Interfaces for High Performance Microprocessors,”
Doctor of Philosophy Thesis, Harvard University, Oct. 2010.
[31] EricWei-Tse Hu, “A 1.8 V 2.5 GHz PLL with on-chip charge pump-based supply regulation,”
Master Thesis, University of Toronto, 2005.
[32] Pierre Maillard, "Radiation-hardened-by-design (RHBD) delay locked loops (DLLs): single
event transient analysis, simulation, and hardening,"Master Thesis, Vanderbilt University,
2001
[33] Eric R. Booth, "WIDE RANGE, LOWJITTER DELAY-LOCKED LOOP USING A GRADUATED
DIGITAL DELAY LINE AND PHASE INTERPOLATOR,"Master Thesis, Boise
State University, 2006
[34] Cheng Jia, "A DELAY-LOCKED LOOP FOR MULTIPLE CLOCK PHASES/DELAYS
GENERATION,"Ph. D Thesis, Georgia Institute of Technology, 2005
[35] Eric Wei-Tse Hu, "A 1.8V 2.5GHz PLL with on-chip charge pump based supply regulation,"
Master Thesis, Toronto University, 2005
[36] Gu-Yeon Wei, "ENERGY-EFFICIENT I/O INTERFACE DESIGN WITH ADAPTIVE
POWER-SUPPLY REGULATION,"Ph. D Thesis, Standford University, 2001
[37] Tyler J. Gomm, "DESIGN OF A DELAY-LOCKED LOOP WITH A DAC-CONTROLLED
ANALOG DELAY LINE,"Master Thesis, Idaho University, 2001
[38] Belal M. Helal, "A Highly Digital MDLL-Based Clock Multiplier That Leverages a Self-
Scrambling Time-to-Digital Converter to Achieve Subpicosecond Jitter Performance,"IEEE
J. Solid-State Circuits, vol. 43, no. 4 Apr. 2008
[39] Jaeha Kim, "Design of CMOS Adaptive-Bandwidth PLL/DLLs: A General Approach,"IEEE
TCAS-II, vol. 50, no. 11 Nov. 2003
[40] Amin Firoozshahian, "SMART MEMORIES: A RECONFIGURABLE MEMORY SYSTEM
ARCHITECTURE," Ph. D Thesis, 2008
[41] Elad Alon, "Replica Compensated Linear Regulators for Supply-Regulated Phase-Locked
Loops,"IEEE J. Solid-State Circuits, vol. 41, no. 2 Feb. 2006
[42] Sheng- Bin Lin, "A 500MHz Low-Jitter CMOS Frequency Synthesizer Using a Self-Biased
Wideband PLL Architecture,"Master thesis 2005
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2011-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明