博碩士論文 985201072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.224.55.82
姓名 林祐聖(Yu-Sheng Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 銻砷化銦鎵基極之異質接面雙極性電晶體於高電流密度操作後之特性研究
(Current Stress Study of InGaAsSb Base Heterojunction Bipolar Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 磷化銦相較傳統矽或砷化鎵材料擁有較高的電子遷移速度與崩潰電場,因此磷化銦材料系統被廣泛應用於高速異質接面雙極性電晶體上。其中銻相關材料如銻砷化鎵與銻砷化銦鎵為基極之異質接面雙極性電晶體。由於type-II之基-集極接面具有高電流傳輸能力與高截止頻率等優點,因此近年來備受關注。然而其可靠度問題至今仍未被廣泛研究,因此本論文為高濃度鈹摻雜的銻砷化銦鎵基極元件之電流壓力測試實驗,觀察元件在高電流密度操作後之特性表現。
吾人使用分子束磊晶法成長晶格匹配之銻砷化銦鎵基極雙異質接面雙極性電晶體於磷化銦基板,再使用1×10 ?m2射極尺寸製程製作之。測試條件設定元件操作於集極電流密度150與300 kA/cm2,為了加快元件衰化速度,此電流壓力測試實驗分別在環境溫度100、150、200 ℃下進行,而元件之特性都在室溫下進行量測。
由實驗結果發現Gummel圖中集極電流平行向高電壓區橫移,顯然導通電壓已增加。然而此陡接面之砷化銦鋁/銻砷化銦鎵雙異質接面雙極性電晶體與傳統使用超晶格射-基極結構之砷化銦鋁/砷化銦鎵單異質接面雙極性電晶體相比,在同樣的實驗條件下其導通電壓上升速度較為緩慢。由於其集極電流理想因子並沒有明顯改變,證明鈹擴散現象在此銻砷化銦基極材料中不明顯。
本研究也發現在1 A/cm2下萃取之導通電壓與射極電阻有同樣的上升趨勢,判斷可能是高電流密度操作造成射極歐姆接觸缺陷增加或者金屬擴散至材料內部。所以未來於更高電流密度操作時必須考慮使用高熔點的射極金屬。
摘要(英) InP-based heterojunction bipolar transistors (HBTs) with antimonide (Sb) content in the base, such as GaAsSb and InGaAsSb, have received a great deal of attention because of their excellent dc and microwave performance associated with type-II band alignment at the base/collector (B/C) junction. However, the reliability issues associated with the Sb-containing base have not been well studied to date.
In this work, the effects of current stress on the electrical characteristics of HBTs with a highly beryllium (Be)-doped InGaAsSb base were investigated. Devices with an emitter size of 1×10 ?m2 were fabricated by a triple mesa wet-etching process. The stress current density used in this work was either 150 or 300 kA/cm2. To accelerate device degradation, current stress was performed at a junction temperature of 200 and 250 ℃. The collector currents for all the InGaAsSb base HBTs show parallel shifts toward higher base/emitter voltage after the stress. The unchanged collector ideality factors and junction capacitances imply that there were no Be out-diffusion at the junctions, thereby indicating the strength of InGaAsSb base HBTs for higher current density operations.
關鍵字(中) ★ 異質接面雙極性電晶體
★ 銻砷化銦鎵
★ 可靠度
★ 壓力測試
關鍵字(英) ★ InGaAsSb
★ reliability
★ current stress
★ HBTs
論文目次 摘要 IV
Abstract V
誌謝 VI
目錄 VII
圖目錄 IX
表目錄 XII
第一章 導論 1
1-1 簡介 1
1-2 研究動機 3
1-3 論文架構 3
第二章 元件製備與實驗方法 4
2-1 元件製備 4
2-2 加速衰化測試實驗系統 6
2-2-1 實驗系統架設 6
2-2-2 實驗方法 7
2-3 元件參數萃取方法 9
2-3-1 歐姆接觸電阻萃取方法 10
2-3-2 寄生電容萃取方法 10
2-3-3 寄生電感萃取方法 11
2-3-4 電流增益截止頻率與最大振盪頻率萃取方法 11
2-3-5 探針金屬接點去嵌入方法 12
第三章 異質接面雙極性電晶體於室溫下之高電流密度操作測試分析 13
3-1 序論 13
3-2 InGaAs與InGaAsSb基極之雙異質接面雙極性電晶體比較分析 14
3-2-1 元件之特性比較 14
3-2-2 元件之初步可靠度檢測 17
3-2-3 元件之暫態衰化現象 21
3-3 InAlAs/InGaAsSb雙異質接面雙極性電晶體之特性分析 24
3-3-1 InAlAs/InGaAsSb雙異質接面雙極性電晶體特性 24
3-3-2 InAlAs/InGaAsSb雙異質接面雙極性電晶體之初步可靠度檢測 27
3-4 元件之暫態衰化現象探討 30
3-5 結論 33
第四章 銻砷化銦鎵異質接面雙極性電晶體之加速衰化測試分析 34
4-1 序論 34
4-2 實驗條件設定與接面溫度計算 35
4-3 加速衰化測試實驗後之電性分析 37
4-3-1 直流特性衰化分析 37
4-3-2 交流特性衰化分析 43
4-4 穿透式電子顯微鏡檢視 48
4-4-1 元件永久損壞原因探討 48
4-4-2 正常元件之穿透式電子顯微鏡檢視 49
4-4-3 衰化後元件之穿透式電子顯微鏡檢視 52
4-4-4 能量分散光譜儀之材料成份分析 54
4-5 結論 56
第五章 結論 57
參考文獻 59
參考文獻 [1] K. P. ROENKE, “RELIABILITY ISSUES FOR III-V HETEROJUNCTION BIPOLAR TRANSISTORS”, Microelectron. Reliab., Vol. 35, No. 4, pp. 713-724, 1995
[2] S. Thomas III, M. Chen, and R. Bowen, “Reliability of 1x5?m2 Emitter InAlAs/InGaAs HBTs Under Bias and Thermal Stress”, 2002 JEDEC
[3] Norihide Kashio, Kenji Kurishima, Yoshino K. Fukai ,”High-Speed and High-Reliability InP-Based HBTs With a Novel Emitter”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 2, FEBRUARY 2010
[4] C. R. Bolognesi, N. Matine, Martin W. Dvorak, P. Yeo, X. G. Xu, and Simon P. Watkins, “InP/GaAsSb/InP Double HBTs: A New Alternative for InP-Based DHBTs”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 11, NOVEMBER 2001
[5] C.R. Bolognesia, N. Matinea, X.G. Xub, G. Soerensenb, S.P. Watkinsb , InP/GaAs0.51Sb0.49/InP fully self-aligned double heterojunction bipolar transistors with a C-doped base: a preliminary reliability study”, Microelectronics Reliability 39 (1999)
[6] Y. Gobert, P. J. Tasker, and K. H. Bachem, “A Physical, Yet Simple, Small-Signal Equivalent Circuit for the Heterojunction Bipolar Transistor”, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 1, JANUARY 1997
[7] Kenji Kurishima, Shoji Yamahata, Hiroki Nakajima, Hiroshi Ito, and Noriyuki Watanabe, “Initial Degradation of Base–Emitter Junction in Carbon-Doped InP/InGaAs HBT's Under Bias and Temperature Stress”, IEEE ELECTRON DEVICE LETTERS, VOL. 19, NO. 8, AUGUST 1998
[8] Takeo Kageyama, Tomoyuki Miyamoto, Masataka Ohta, Tetsuya Matsuura, Yasutaka, Matsui, Tatsuya Furuhata, and Fumio Koyama, “Sb surfactant effect on GaInAsÕGaAs highly strained quantum well lasers emitting at 1200 nm range grown by molecular beam epitaxy”, JOURNAL OF APPLIED PHYSICS, VOLUME 96, NUMBER 1, 1 JULY 2004
[9] Kang-Ho Park, Jeong Sook Ha, Seong-Ju Park, El-Hang Lee, “Ag growth on Si(111) with an Sb surfactant investigated by scanning tunneling microscopy”, Surface Science 380 (1997) 258 263
[10] W. Liu, “Fundamentals of III-V Devices”, WILEY-INTERSCINCE 1999
[11] SANDIP TIWARI, “Analysis of the operation of GaAlAs/GaAs HBT's”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 36, NO. 10, OCTOBER 1989
[12] Hong Wang, and Geok-Ing Ng. “Current Transient in Polyimide-Passivated InP/InGaAs Heterojunction Bipolar Transistors: Systematic Experiments and Physical Model”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 12, DECEMBER 2000
[13] E. F. Chor, R. J. Malik, R. A. Hamm and R. Ryan, “Metallurgical Stability of Ohmic Contacts on Thin Base InP/InGaAs/InP HBT's”, IEEE ELECTRON DEVICE LETTERS, VOL. 17, NO. 2,FEBRUARY 1996
[14] Yang-Hua Chang, Jian-Wen Chen, “Extraction of VBIC model parameters for InGaAsSb DHBTs”, Microelectronics Reliability 50 (2010) 370–375
[15] Sandeep R. Bahl, Nick Moll, Virginia M. Robbins, Hao-Chung Kuo, Brian G. Moser and Gregory E. Stillman, “Be Diffusion in InGaAs/InP Heterojunction Bipolar Transistors”, IEEE ELECTRON DEVICE LETTERS, VOL. 21, NO. 7, JULY 2000
[16] Kyounghoon Yang, Jack R., and George I. Haddad, “Numerical Study on the Injection Performance of AlGaAs/GaAs Abrupt Emitter Heterojunction Bipolar Transistors”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 41, NO. 2, FEBRUARY 1994
[17] K. P. ROENKE, “RELIABILITY ISSUES FOR III-V HETEROJUNCTION BIPOLAR TRANSISTORS”, Microelectron. Reliab., Vol. 35, No. 4, pp. 713-724, 1995
[18] J. Sexton and M. Missous, “Annealing Experiments on InP/InGaAs Single ans Double HBTs Grown by Molecular Beam Epitaxy”, EDMO., 300 - 305, 18-19 Nov. 2002
[19] G.A. Koné,B. Grandchamp, C. Hainaut, F. Marc, C. Maneux, N. Labat, T. Zimmer, V. Nodjiadjim, J. Godin, “Preliminary results of storage accelerated aging test on InP/InGaAs DHBT”, Microelectronics Reliability 50 (2010) 1548–1553
[20] Yoshino K. Fukai, Kenji Kurishima, Norihide Kashio, Minoru Ida, Shoji Yamahata, Takatomo Enoki, “Emitter-metal-related degradation in InP-based HBTs operating at high current density and its suppression by refractory metal”, Microelectronics Reliability 49 (2009) 357–364
[21] Sandeep R. Bahl, Nick Moll, Virginia M. Robbins, Hao-Chung Kuo, Brian G. Moser and Gregory E. Stillman, “Be Diffusion in InGaAs/InP Heterojunction Bipolar Transistors”, IEEE ELECTRON DEVICE LETTERS, VOL. 21, NO. 7, JULY 2000
[22] Masashi Uematsu and Kazumi Wada, “Recombination-enhanced impurity diffusion in Be-doped GaAs”, Appl. Phys. Lett., Vol. 58, No. 18, 6 May 1991
[23] Sheng-Yu Wang, Pei-Yi Chiang, Chao-Min Chang, Shu-Han Chen, and Jen-Inn Chyi, “Low Surface Recombination in InAlAs/InGaAsSb/InGaAs Double Heterojunction Bipolar Transistors”, IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 12, DECEMBER 2010
[24] Yoshino K. Fukai, Kenji Kurishima, Norihide Kashio, Minoru Ida, Shoji Yamahata, Takatomo Enoki, “Emitter-metal-related degradation in InP-based HBTs operating at high current density and its suppression by refractory metal”, Microelectronics Reliability 49 (2009)
[25] Stephen Thomas III, James A. Foschaar, Charles H. Fields, Meena M. Madhav, Marko Sokolich, Rajesh D. Rajavel, and Binqiang Shi, “Effects of Device Design on InP-Based HBT Thermal Resistance”, IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 1, NO. 4, DECEMBER 2001
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2011-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明