博碩士論文 985201086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.222.115.217
姓名 李駿華(Jun-hua Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 無頻寬減損之微小化功率分配器與巴特勒矩陣
(Miniaturized power divider and Butler matrix with no bandwidth reduction)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要針對功率分配器與巴特勒矩陣,以頻寬不減損為前提實現微小化之設
計。傳統的功率分配器或直交分合波器等,均由多段λ/4傳輸線組成,面積都會受限於傳
輸線長度,頻率越低面積越大。一般縮小傳輸線長度的方法大致有兩種:其一為使用彎
折的方式,縮小幅度有限;其二為使用集總元件等效傳輸線,如傳統的T模型,但頻寬
會因此縮減。本論文提出利用修正T模型取代傳統T模型,使頻寬在不減損的情況下達到
縮小化的目的。在電路設計方面,使用平衡式電感與平行板電容的架構來實現,以利於
積體電路製成實現。
本研究以GaAs與Glass Integrated Passive Device (GIPD) 製程分別實現出中心頻率
2.5 GHz的威爾京生分波器與直交分合波器,面積分別為0.020λg × 0.034λg與0.021λg ×
0.022λg,遠小於傳統設計,而頻寬相對於理想電路並無減損。再利用直交分合波器與45
度等效傳輸線,在GIPD製程上設計中心頻率2.5 GHz之4 × 4巴特勒矩陣,面積為0.044λg
× 0.047λg,頻寬34%(反射損耗>10 dB);在GaAs製程上設計中心頻率5.5 GHz之二階功率
分配器,面積為0.044λg × 0.078λg,頻寬129.1%(反射損耗 > 15 dB)。
摘要(英) In this thesis, compact Wilkinson power divider and Butler matrix are designed with no
bandwidth reduction. Traditional Wilkinson power divider and branch-line coupler are
composed of many quarter-wavelength transmission-line sections at a designated frequency.
However, at the lower frequencies of the microwave band, the sizes of conventional
Wilkinson power divider and branch-line coupler are too large for practical use.
Conventionally, there are two ways to reduce the size of transmission lines. The first one is
achieved by using the folded line configuration, but the resultant circuit area is still large. The
other is accomplished by adopting lumped-element components, such as using the T or π
equivalent model, may be employed to reduce the circuit size, however these equivalent
models are useful only in a narrow bandwidth around the center frequency. In order to expand
the applicable frequency range of the equivalent circuit, this thesis adopts the modified-T
model for the λ/4 lines, so that the very compact designs may be implemented with no
bandwidth reduction. The proposed circuit designs are accomplished by adopting balance
inductors and metal-insulator-metal (MIM) capacitors so these designs may be suitable for
MMIC applications.
This thesis presents a compact 2.5GHz Wilkinson power divider, which is fabricated by
GaAs, shows the circuit size of 0.020λg × 0.034λg, and a compact 2.5GHz branch-line coupler,
which is fabricated by Glass Integrated Passive Device (GIPD), shows the circuit size of
0.021λg × 0.022λg. The circuit size is really small compared with traditional ways, and these
deigns are no bandwidth reduction. In addition, a compact 2.5GHz 4 × 4 Butler matrix, which
is fabricated by GIPD, is presented. The circuit size is 0.044λg × 0.047λg and the bandwidth is
34% (|S11| > 10 dB). A compact two section Wilkinson power divider is also presented in
GaAs process. The circuit size is 0.044λg × 0.078λg and the bandwidth is 129.1% (|S11| > 15
dB).
關鍵字(中) ★ 巴特勒矩陣
★ 功率分配器
★ 直交分合波器
關鍵字(英) ★ branch-line coupler
★ power divider
★ Butler matrix
論文目次 論文摘要 .................................................................................................................................... I
Abstract ..................................................................................................................................... II
致謝 ......................................................................................................................................... III
目錄 ......................................................................................................................................... IV
圖目錄 ..................................................................................................................................... VI
表目錄 .................................................................................................................................. VIII
第一章 緒論 .............................................................................................................................. 1
1.1 研究動機 ..................................................................................................................... 1
1.2 文獻回顧 ..................................................................................................................... 2
1.3 章節介紹 ..................................................................................................................... 4
第二章 修正T 等效傳輸線原理與設計 .................................................................................. 5
2.1 修正T 模型 ................................................................................................................. 5
2.2 微小化傳輸線設計 ..................................................................................................... 8
2.2.1 電路架構與原理 .............................................................................................. 8
2.2.2 實作與量測驗證 ............................................................................................ 10
2.3 結論 ........................................................................................................................... 22
第三章 微小化威爾京生功率分配器 .................................................................................... 23
3.1 一階電路設計 ........................................................................................................... 23
3.1.1 電路架構與原理 ............................................................................................ 23
3.1.2 實作與量測驗證 ............................................................................................ 24
3.2 二階電路設計 ........................................................................................................... 29
3.2.1 電路架構與原理 ............................................................................................ 29
3.2.2 實作與量測驗證 ............................................................................................ 30
3.3 結論與文獻比較 ....................................................................................................... 35
第四章 微小化巴特勒矩陣 .................................................................................................... 36
4.1 直交分合波器 ........................................................................................................... 36
V
4.1.1 電路架構與原理 ............................................................................................ 36
4.1.2 實作與量測驗證 ............................................................................................ 37
4.1.3 結論與文獻比較 ............................................................................................ 44
4.2 巴特勒矩陣 ............................................................................................................... 45
4.2.1 電路架構與原理 ............................................................................................ 45
4.2.2 實作與量測驗證 ............................................................................................ 46
4.2.3 結論與文獻比較 ............................................................................................ 53
第五章 結論 ............................................................................................................................ 54
參考文獻 ................................................................................................................................. 56
參考文獻 [1] T. S. Horng, J. M. Wu, L.Q. Yang and S. T. Fang, “A novel modified-T equivalent circuit
for modeling LTCC embedded inductors with a large bandwidth,” IEEE MTT-S Int.
Microwave Symp. Dig., 2003, pp.1015–1018.
[2] 張盛富、戴明鳳,無線通信之射頻被動電路設計,全華科技圖書股份有限公司,民
國八十七年。
[3] J. Wilkinson, “An n-way hybrid power divider,” IEEE Trans. Microw. Theory Tech., vol.
MTT-8, no. 1, pp. 116–118, Jan. 1960.
[4] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005, ch. 7.
[5] X. Tang and K. Mouthaan, “Analysis and design of compact two-way Wilkinson power
dividers using coupled lines,” in Asia–Pacific Microw. Conf., Dec. 7–10, 2009, pp.
1319–1322.
[6] Y. Wu, Y. Liu and Q. Xue, “An analytical approach for a novel coupled-line dual-band
Wilkinson power divider,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp.
286–294, Feb. 2011.
[7] S. Kim, S. Jeon and J. Jeong, “Compact two-way and four-way power dividers using
multi-conductor coupled lines,” IEEE Microw. Wireless Compon. Lett.,, vol. 21, no. 3, pp.
130 – 132, Mar. 2011.
[8] M. M. Elsbury, P. D. Dresselhaus, N. F. Bergren, C. J. Burroughs, S. P. Benz and Z.
Popovic, “Broadband lumped-element integrated N-way power dividers for voltage
standards,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 2055–2063, Jan. 2009.
[9] J. G. Kim and G. M. Rebeiz, “Miniature four-way and two-way 24 GHz Wilkinson power
dividers in 0.13 μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp.
658–660, Sep. 2007.
57
[10] M. C. Scardelletti, G. E. Ponchak, and T. M. Weller, “Miniaturized Wilkinson power
dividers utilizing capacitive loading,” IEEE Microw. Wireless Compon. Lett., vol. 12, no.
1, pp. 6–8, Jan. 2002.
[11] M. J. Chiang, H. S. Wu and C. K. Tzuang, “A Ka-band CMOS Wilkinson power divider
using synthetic quasi-TEM transmission lines,” IEEE Microw. Wireless Compon. Lett.,
vol. 17, no. 12, pp. 1531–1309, Dec. 2007.
[12] S. S. Liao and J. T. Peng, “Compact planar microstrip branch-line couplers using the
quasi-lumped elements approach with nonsymmetrical and symmetrical T-shaped
structure,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 3508–3514, Sep. 2006.
[13] C. W. Wang, T. G. Ma, and C. F. Yang, “A new planar artificial transmission line and its
applications to a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 55,
pp. 2792–2801, Dec. 2007.
[14] K. W. Eccleston and S. H. M. Ong, “Compact planar microstripline branch-line and
rat-race coupler,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 2119–2125, Oct. 2003
[15] S. S. Liao, P. T. Sun, N. C. Chin and J. T. Peng, “A novel compact-size branch-line
coupler ,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 588–590, Sep. 2005.
[16] K. O. Sun, S. J. Ho, C. C. Yen and D. Weide, “A compact branch-line coupler using
discontinuous microstrip lines” IEEE Microw. Wireless Compon. Lett., vol. 15, pp.
519–520, Aug. 2005.
[17] S. C. Jung, R. Negra, and F. M. Ghannouchi, “A design methodology for miniaturized
3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area,”
IEEE Trans. Microw. Theory Tech, vol. 56, pp. 2950-2953, Dec. 2008.
[18] C. W. Tang, M. G. Chen, and C. H. Tsai, “Miniaturization of microstrip branch-line
coupler with dual transmission lines ,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp.
185-187, Mar. 2008.
58
[19] I. Haroun, J. Wight, C. Plett, A. Fathy and D. C. Chang, “Experimental analysis of a 60
GHz compact EC-CPW branch-line coupler for mm-wave CMOS radios,” IEEE Microw.
Wireless Compon. Lett., vol. 20 , no. 4, pp. 211–213, Apr. 2010.
[20] C. H. Wu and H. H. Tseng, “A compact branch-line coupler using π-equivalent
shunt-stub-based artificial transmission lines,” in Proc. Asia–Pacific Microw. Conf., pp.
802–805, Dec. 2010.
[21] J. Wang, B. Z. Wang, Y. X. Guo, L. C. Ong and S. Xiao, “A compact slow-wave
microstrip branch-line coupler with high performance,” IEEE Microw. Wireless Compon.
Lett., vol. 17, pp. 501-503, Jul. 2007.
[22] M. J. Chiang, H. S. Wu, M. L. Lee and C. K. C. Tzuang, “Design of compact Ka-band
monolithic branch-line coupler on silicon substrate,” in Proc. Asia–Pacific Microw. Conf.,
pp. 2124 – 2127, Jan 2009.
[23] M. Bona, L. Manholm, J. P. Starski and B. Svensson, “Low-loss compact Butler matrix
for a microstrip antenna,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp.
2069–2075, Sep. 2002.
[24] M. Nedil, T. A. Denidni, and L. Talbi, “Novel Butler matrix using CPW multilayer
technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 499–507, Jan. 2006.
[25] Y. S. Jeong and T. W. Kim, “Design and analysis of swapped port coupler and its
application in a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 58,
no. 4, Apr. 2010.
[26] C. W. Wang, T. G. Ma and C. F. Yang, “A new planar artificial transmission line and its
application to a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 55,
no. 12, pp. 2792–2801, Dec. 2007.
[27] G. Tudosie, H. Barth and R. Vahldieck, “A compact LTCC Butler matrix realization for
phased array applications,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 441–444, Jun.
2006.
59
[28] C. C. Chang, T. Y. Chin, J. C. Wu and S. F. Chang, “Novel design of a 2.5–GHz
fully-integrated CMOS Butler matrix for smart-antenna systems,” IEEE Trans Microw.
Theory Tech., vol. 56, no. 8, pp. 1757–1763, Aug. 2008.
[29] Y. S. Lin, C. C. Liu, K. M. Li and C. H. Chen, “Design of an LTCC tri-band transceiver
module for GPRS mobile applications,” IEEE Trans. Microw. Theory Tech, vol. 52, no.
12, pp. 2718–2724, Dec. 2004.
[30] T.-N. Kuo, Y.-S. Lin, C.-H. Wang and C. H. Chen, “A compact LTCC branch-line
coupler using modified-T equivalent-circuit model for transmission line,” IEEE Microw.
Wireless Compon. Lett., vol. 16, no.2, pp. 90–92, Feb. 2006.
指導教授 林祐生(Yo-shen Lin) 審核日期 2011-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明