博碩士論文 985201055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.148.108.134
姓名 李永祥(Yung-Hsiang Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
(The uniformity study of large area a-Si:H thin film deposited by TE mode Electron Cyclotron Resonance Chemical Vapor Deposition)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氫化非晶矽薄膜太陽能電池,因長時間能量產率佳、低照度條件下光電轉換效率高及材料價格便宜等優點,使其逐漸受到重視。在業界,常用PECVD成長氫化非晶矽太陽能電池,但因沉積速率慢、離子轟擊等缺點,故常使用沉積速率快且能大面積生長之ECR CVD,如能改善ECR CVD大面積下沉膜均勻性,則有利於應用於高效率、低光衰氫化非晶矽太陽能電池之量產。
本團隊改良單一主磁圈之ECR CVD,於製程盤面周圍裝上可調變磁場大小之內磁圈與外磁圈用以改善大面積沉膜均勻度。本研究目的在於調變ECR CVD之各磁圈電流大小,經由主磁圈、內磁圈及外磁圈相對應之磁場組態,輔以製程壓力、微波功率及基板溫度之參數改變,達到6吋氫化非晶矽沉膜面積高均勻性之目標。
研究發現當盤面內外磁場大小差異越大並且為磁場組態Cusp field、製程壓力越低、微波功率越高時,均勻性可由約20%改善至8%,而改變基板溫度時,對於大面積沉膜均勻度並不會有顯著的影響。最後我們將所有最佳均勻性參數組合,發現當主磁圈、下外磁圈及下內磁圈電流為36A、26A及36A,製程壓力1.5 mtorr,微波功率及基材溫度為2000W、350℃時,可以得到6%的高均勻度。
摘要(英) The crucial problem of solar cell is the energy-conversion efficiencies and the Manufacturing costs. The a-Si:H thin film solar is gradually interested in its great energy production rate for long time illumination,better conversion efficiency under low illumination and cheaper.in industry, a-Si:H is regularly deposited by PECVD. Because of the low deposition rate and ion bombard of PECVD, the Manufacturing costs will decrease if a-Si:H thin film solar cell were deposited by high deposition rate and large plasma source ECRCVD. To spread the application of ECRCVD to industry, it is necessary for developing large uniform plasma and is helpful for the quantity produces of high quality and low light-soaking degradation a-Si:H thin film solar cell.
In our research group, we installed sub-magnetic (auxiliary) fields for inner and outer coils under ECR-CVD process chamber to improve the deposition uniformity of a-Si:H solar thin films. In this work, We adjusted process parameters like magnetic field distribution of deposition chamber, working pressure, microwave power substrate and temperature to improve the uniformity of a-Si:H thin film solar cell and succeeded in obtaining an excellent deposition uniformity of a-Si:H solar thin films over 150mm diameter on glass substrates. The thickness variations of 1% over 75 mm and 6% over 150 mm were achieved when (Main, Outer, Inner) coil current is (36A, 26A, 36A), working pressure is 1.5 mtorr, microwave power is 2000W, and substrate temperature is 350℃.
關鍵字(中) ★ 大面積均勻度
★ 電子迴旋共振
★ 氫化非晶矽
★ 化學氣相沉積
關鍵字(英) ★ TE Mode
★ a-Si:H Thin film
★ uniformity
★ ECR CVD
論文目次 第一章 緒論 1
1-1 研究背景與目的 1
1-2 文獻回顧 3
第二章 理論基礎 6
2-1 電漿 6
2-1-1 基本電漿理論 6
2-1-2 電漿中粒子非彈性碰撞 7
2-2 ECR電漿 9
2-2-1 電子迴旋共振運動 9
2-2-2 帶電粒子迴旋運動之漂移速度 10
2-2-3 磁約束力 12
2-2-4 博姆擴散 14
2-2-5 電漿頻率 15
2-2-6 電漿波 16
2-3 薄膜化學氣相沉積製程 21
2-3-1 薄膜生長理論 21
2-3-2 化學氣相沉積沉積機制 27
2-3-3 工業上常用的CVD機台 30
2-4 ECR-CVD電漿反應原理機制 33
第三章 實驗設備與方法 36
3-1 實驗流程 36
3-2 實驗方法 37
3-3 實驗設備 37
3-4製程參數設定 39
3-4-1 磁場組態 39
3-4-2 製程壓力 40
3-4-3 微波功率 41
3-4-4 基材溫度 42
3-5樣本製備 43
3-5-1 樣本材料 43
3-5-2 擺放位置 43
3-5-3 試片清潔 44
3-6 均勻度計算與分析 45
3-7 分析儀器 47
3-7-1 表面輪廓儀(Dektak) 47
3-7-2 橢圓儀(Ellipsometer) 48
3-7-3 光放射光譜儀(Optical Emission Spectroscopy,OES) 49
第四章 結果與討論 51
4-1磁場分布對均勻度的影響 51
4-1-1 基板表面磁場組態 51
4-1-2 電漿共振位置 57
4-2 製程壓力 59
4-3 微波功率 63
4-4 基材溫度 66
4-5 最佳化結果 69
第五章 結論與未來研究方向 71
參考文獻 74
參考文獻 [1] 黃惠良等人編著,太陽電池,初版,五南圖書,台灣,民國九十八年十月。
[2] Sapporo, Hokkaido, “NEDO/Ritsumeikan Univerity Demographic Module Field Test and Operational Analysis”, CO. Kaneka, International PV SEC-11, Japan, 1999.
[3] M. Schmela, Photon International, 11,10 ,Nov 2000.
[4] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge‐produced amorphous Si”, Appl. Phys. Lett., Vol. 31, pp. 292, 1977.
[5] C. R.Wronski, Mat. Res. Soc. Symp. Proc., Vol. 469, pp.7, 1997.
[6] Jiang, Y. L. and C. C. Kuo, proceedings of 1998 IEDMS, 243, Tainan, Taiwan, Dec 1998.
[7] Jiang, Y. L., M. J. Lee, and S. H. Chen , “The Structural Evolution of A-SI:H Films Prepared by Pulse Rf Power Modulation with Hydrogen and Helium Dilution”, Materials Research Society Symposium Proceedings, Vol. 507, pp.523, 1998.
[8] Jiang, Y. L. et al., Proceedings of IEDMS 2002, 20-21, Taipei, Taiwan, 511, Dec 2002.
[9] 陳 家 豪, 「大面積低溫微波電漿輔助化學氣相沉積薄膜之研究」,中央大學,碩士論文,民國91年7月。
[10] A. Murai, I. Ohya, T. Yasui, H. Tahara, and T. Yoshikawa, ” Generation of large-area disk-shaped ECR plasma for diamond deposition”, Thin Solid Films, Vol. 281-282, pp. 146-148, 1996.
[11] R. Roth, B. Rau, S. Roth, J. Mai, and K. H. Dittrich, “Large area and three-dimensional deposition of diamond-like carbon films for industrial applications”, Surface and Coatings Technology, Vol. 74-75, pp. 637-641, 1995.
[12] H. Nishimura, M. Kruchi, and S. Matsuo, “Processing Uniformity Improvement by Magnetic Field Distribution Control in Electron Cyclotron Resonance Plasma Chamber”, Japanese Journal of Applied Physics, Vol. 32, pp. 322-326, 1993.
[13] S. E. Lassig and J. D. Tucker, “Intermetal dielectric deposition by electron cyclotron resonance chemical vapor deposition (ECR CVD)”, Microelectronics Journal, Vol. 26, pp.8, 1995.
[14] S. Nakayama, “ECR (electron cyclotron resonance) plasma for thin film technology”, Pure & Appl. Chern., Vol . 62, pp. 1751-1756, 1990.
[15] Y. Kawai, N. Itagaki, M. Koga, and H. Muta, “Production of low electron temperature ECR plasma”, Surface & Coatings Technology, Vol 193, pp.11-16, 2005.
[16] M.S. Brandt , M.W. Bayerl , M. Stutzmann , and C.F.O. Graeff , “Electrically detected magnetic resonance of a-Si:H at low magnetic fields: the influence of hydrogen on the dangling bond resonance”, Journal of Non-Crystalline Solids, Vol. 227–230, pp. 343–347, 1998.
[17]胡耀輝、陰生毅、陳光華、吳越穎、周小明、周健兒、王青和張文理,「MWECR CVD等離子體系統梯度磁場對沉積a-Si:H薄膜特性研究」,物理學報, 53, 2263-2207頁,2004。
[18] Y. Ueda and Y. Kawai, “Observation of electromagnetic waves in a large-diameter uniform electron cyclotron resonance plasma by a multislot antenna”, Surface and Coatings Technology, Vol. 98, pp.1341-1346, 1998.
[19] Y. Ueda, H. Teranishi, M. Tanaka, S. Shinohara, and Y. Kawai “Deposition of a-Si" H films by ECR plasma CVD using large diameter multi-slot antennae”, Surface and Coatings Technology, Vol. 74-75, pp. 503-507, 1995.
[20] Y. Ueda, V Inoue,S Shinohara, and Y. Kawai, “Deposition of large area amorphous silicon films by ECR plasma CVD”, Vacuum, Vol. 48, pp. 119 ~122, 1997.
[21] Y. Kawai, K. Uchino, H. Muta, S. Kawai, and T. Ro‥wf, “Development of large diameter ECR plasma source”, Vaccum, Vol. 84, pp.1381~1384, 2010.
[22] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion: Plasma Physics, Second edition, Kluwer Academic Pub, New York, 1984.
[23] N. Itagaki, T. Yoshizawa, Y. Ueda, and Y. Kawai, “Investigation of ECR plasma uniformity from the point of view of production and confinement”, Thin Solid Films, Vol. 386, pp152~159, 2001.
[24] D. King, M.K. Yaran, T. Schuelke, T.A. Grotjohn, D.K. Reinhard, and J. Asmussen, “Scaling the microwave plasma-assisted chemical vapor diamond deposition process to 150–200 mm substrates”, Diamond & Related Materials , Vol. 17, pp.520-524, 2008.
[25] L. Latrasse, A. Lacoste, J.C. Sanchez-Lopez, A. Bes, M. Rayar, and J. Pelletier, “High deposition rates of uniform films in tetramethylsilane-based plasmas generated by elementary microwave sources in matrix configuration, Surface & Coatings Technology, Vol. 203, pp2343-2349, 2009.
[26] M. Koga, Y. Hishikawa, H. Tsuchiya, and Y. Kawai, “Production of a large diameter ECR plasma with low electron temperature”, Thin Solid Films, Vol. 506– 507, pp.499-502, 2006.
[27] I. Langmuir, Proceedings of the National Academy of Sciences of the United States of America, 14, 627, 1928.
[28] 蕭宏(Hong Xiao) 著,半導體製程技術導論 修訂版,羅正忠譯,台北市,台灣培生教育,民國98年.
[29] 魏寶文、趙紅衛著,離子的噴泉,一版,清華大學、暨南大學,北京,2001.
[30] D. J. Griffiths, Introduction to Electrodynamics, third edition, Prentice Hall, U.S.A., 1998.
[31] S. M. Rossnagel, Jerome J. Cuomo, William D. Westwood, “Handbook of plasma processing technology Fundamentals”, William Dickson, 1937.
[32] H. R. Kaufman,” Explanation of Bohm diffusion”, J. Vac. Sci. Technol, Vol B 8, , pp107, 1990
[33] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion: Plasma Physics, Second edition, New York, 1984.
[34] STUT:薄膜沉積。2011年10月14日,取自http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch3.htm。
[35 ]Smith, and L. Donald , Thin Film Deposition: principles and practice, First edition, McGraw-Hill, 1994.
[36] 穆第慕(Charles E.Mortimer) 著,大學化學,吳惠平譯,科技圖書股份有限公司,台北市,民國八十四年。
[37] 修平技術學院:化學氣相沉積。2011年10月14日取自http://entry.hit.edu.tw/~d901023/page_2-2.htm
[38] DOW CORNING:Chemical Vapor Deposition。2011年10月14日取自http://www.dowcorning.com/content/etronics/etronicschem/etronics_newcvd_tutorial3.asp?DCWS=Electronics&DCWSS=Chemical%20Vapor%20Deposition.
[39] A. Matsuda , M. Takai, T. Nishimoto, and M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials and Solar Cells, Vol. 78, pp.3, 2003.
[40]A. Matsuda, “Thin-Film Silicon —Growth Process and Solar Cell Application”, Japanese Journal of Applied Physics, Vol. 43, pp. 7909–7920, 2004.
[41] R. Yao and K. Lin, “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, 1997
[42] M. J. Kushner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, Journal of Applied Physics, Vol. 62, pp. 2803–2811, 1987.
[43] M. Kondo, “Microcrystalline materials and cells deposited by RF glow discharge”, Solar Energy Materials & Solar Cells, Vol. 78, pp. 543-566, 2003.
[44] S.J. Jones, R. Crucet, X. Deng, D.L. Williamson, and M. Izu, “Preparation of Microcrystalline Silicon Based Solar Cells at High i-layer Deposition Rates Using a Gas Jet Technique”, Materials Research Society Symposium Proceedings, Vol. 609, pp A4.5.1-4.5.7, 2000.
[45] H. Shiraia., Y. Sakumaa, and H. Ueyamab, “The high-density microwave plasma for high rate deposition of microcrystalline silicon”, Thin Solid Films, Vol. 345, pp.5~7, 1999
[46] H. Jia, J. K. Saha, and H. Shirai, “Plasma Parameters for Fast Deposition of Highly Crystallized Microcrystalline Silicon Films Using High-Density Microwave Plasma, Japanese Journal of Applied Physics, Vol 45, pp.666-637, 2006.
[47] H. Jia, H. Shirai, and M. Kondo, Materials Research Society Symposium Proceedings, Vol. 910, pp. 309 , 2006.
[48] B. Yan, J. Yang, S. Guha, and A. Gallagher, “Analysis of Plasma Properties and Deposition of Amorphous Silicon Alloy Solar Cells Using Very High Frequency Glow Discharge”, Materials Research Society Symposium Proceedings, Vol. 557, pp115-120, 1999.
[49] 95 proc. of 21st European photovoltaic solar energy conference, 1597, 2006
[50] H. Matsumura, “Summary of research in NEDO Cat-CVD project in Japan”, Thin Solid Films, Vol. 395, pp.1-11, 2001.
[51] K. Ishibashi, “Development of the Cat-CVD apparatus and its feasibility for mass Production”, Thin Solid Films, Vol. 395, pp.55-60, 2001.
[52] L. Guo, M. Kondo, M. Fukawa, K. Saitoh, and A. Matsuda,”High Rate Deposition of Microcrystalline Silicon Using Conventional Plasma-Enhanced Chemical Vapor Deposition”, Japanese Journal of Applied Physics, Vol. 37, pp. L1116-L1118, 1998.
[53] M. Fukawa, S. Suzuki, L. Guo, M. Kondo, and A. Matsuda, “High rate growth of microcrystalline silicon using a high-pressure depletion method with VHF Plasma”, Solar Energy Materials & Solar Cells, Vol.66, pp. 217~223, 2001.
[54] A. Matusda, ” Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol. 337, pp. 1, 1999.
[55]田民波,薄膜技術與薄膜材料,初版,五南出版社,台灣,民國九十六年。
指導教授 利定東、郭明庭
(Ting-Tung Li、Ming-Ting Kuo)
審核日期 2011-10-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明