博碩士論文 975201127 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.140.185.123
姓名 林昱辰(Yu-Chen Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用資料延遲視窗之雙迴路時脈與資料回復電路
(A Dual-Looped Clock and Data Recovery Circuit with the Use of Data Delay Window)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於近年來製程演進,使得快速傳輸大量資料已成為傳輸系統的主要動機,因此傳統的平行匯流排已不敷使用,取而代之的為目前被廣泛使用的高速串列傳輸系統。
本論文採用雙迴路架構,利用半速率取樣方式應用於3 Gbps的串列傳輸系統,此架構相似於超取樣式的概念,採用資料延遲視窗及取樣式相位偵測器取代傳統的D型正反器式的延遲單元。此方法可以只用一筆時脈對延遲後的資料做取樣而非使用多個時脈相位,可以避免走線的不匹配及降低設計困難度。雙迴路相位選擇式架構分別由多相位時脈倍頻器與資料回復電路所組成,其主要優勢在於二個獨立迴路,可以解決單一迴路中抖動轉移函數與抖動容忍度的頻寬互相衝突的問題,此外,利用鎖相迴路中震盪器的控制訊號控制延遲單元可以使延遲時間不受到製程電壓溫度變異的影響。若當輸入資料頻率發生抖動,頻率偵測器可以偵測出頻率差異並進行粗調調整相位繼續追鎖。
本論文之雙迴路架構採用TSMC 0.18 μm 1P6M CMOS製程,供應電源為1.8 V,輸入資料為3Gbps,取樣速率為1.5 GHz,經模擬驗證輸出回復時脈抖動為14.7 ps,並列輸出的回復資料抖動均小於15.8ps,晶片面積為1.13 mm2 。
摘要(英) In recent year, owing to the development of network and processor, the requirement of the high-speed data transmission has become the main motivation of transmission system. The conventional parallel bus shows the serious restriction while operating in the gigahertz range. As a result, the high-speed serial link technology is widely used so far for today’s data transmission system.
This thesis presents a half-rate and dual-looped clock and data recovery (CDR) for the 3-Gbps data transmission systems. Similar to the concept of the oversampling CDR, the proposed CDR presents an alternative scheme, which uses the data delay window (DDW) and a sensing-amplified phase detector to substitute the conventional DFF-based PD. It shows that the NRZ data could be aligned and recovered by the only one clock instead of the multi-phase clock, and the complexity of the clock distribution network could be mitigated than counterpart. In addition, the control- mirroring signal stemming from the PLL locking signal indicates the robust of data delay segment of DDW in the process, voltage, and temperature variations. In terms of the bandwidth setting, both the DR and PLL bandwidth optimization for jitter suppression and the shortened acquisition time could also come to compromise. Besides, once the input data has frequency deviation, the use of the frequency detector would detect such data frequency difference and coarsely adjust the tracking phase in success.
This thesis implements the dual-looped CDR circuit in TSMC 180 nm 1P6M CMOS process. Operating at the 3-Gbps data rate and 1.5-GHz clock frequency, the estimated peak to peak jitter of the recovered clock is 14.7 ps, and the recovered data jitter is less than 15.8 ps. The core area of CDR occupies 1.13 mm2.
關鍵字(中) ★ 時脈與資料回復電路
★ 鎖相迴路
關鍵字(英) ★ CDR
★ PLL
論文目次 摘要 i
目錄 v
圖目錄 viii
表目錄 xi
第1章 緒論 1
1.1 研究動機 1
1.2 論文架構 3
第2章 資料回復電路之時脈抖動分析 4
2.1 時脈抖動簡介 4
2.2 定量性抖動 5
2.2.1 責任週期失真 5
2.2.2 符碼間干擾 6
2.2.3 週期性抖動 7
2.3 隨機抖動 8
2.4 眼圖 9
2.5 誤碼率 10
2.6 時脈與資料回復電路的抖動函數 11
第3章 時脈倍頻電路 13
3.1 簡介 13
3.1.1 線性模型 14
3.2 時脈倍頻電路架構 19
3.2.1 相位頻率偵測器 19
3.2.2 充放電幫浦電路 21
3.2.3 迴路濾波器設計 23
3.2.4 電壓控制振盪器 24
3.2.5 除頻器 28
3.3 模擬結果 29
3.4 量測 31
3.4.1 晶片布局與照相圖 31
3.4.2 量測環境 33
3.4.3 量測結果 34
第4章 時脈與資料回復電路 35
4.1 時脈與資料回復電路簡介 35
4.1.1 串列連接與並列連接 36
4.1.2 資料形式 37
4.2 取樣速率 38
4.3 電路架構 38
4.3.1 時脈倍頻電路 40
4.4 抖動容忍度與頻寬分析 41
4.5 資料回復電路架構 44
4.5.1 資料延遲視窗與相位偵測器 44
4.5.2 數位濾波器 51
4.5.3 相位旋轉器 56
4.5.4 相位調整器 58
4.5.5 頻率偵測器 62
4.5.6 輸入與輸出驅動電路 65
4.6 模擬結果 66
4.7 晶片 70
4.7.1 晶片佈局 70
4.8 規格比較表 72
4.8.1 量測環境 73
第5章 結論 74
5.1 結論 74
5.2 未來改進方向 74
參考文獻 76
參考文獻 參考文獻
[1] Serial ATA Workgroup “SATA: High speed Serialized AT Attachment,” Revision 2.6, Feb. 2006.
[2] PCI Express™ Base Specification , Gen2 Rev 0.3, Jul. 27, 2005.
[3] Agilent Technologies “Jitter Fundamental & Measurement Technology,”.
[4] M. Aoyama, K. Ogasawara, and M. Sugawara “3Gbps, 5000ppm spread spectrum SerDes PHY with frequency tracking phase interpolator for Serial ATA,” IEEE Symp. on VLSl Circuits Digest of Technical Papers 8-4, pp. 107-110, Jun. 2003.
[5] C. Emmerich “Introduction to Jitter,” Product Marketing Engineer, Wavecrest, Oct. 2001.
[6] Understanding Jitter, WAVECREST Corporation, 2001.
[7] Agilent Technologies “Jitter Fundamental & Measurement Technology,”.
[8] Agilent Technologies “Measuring Jitter in Digital Systems ,” Application Note 1448-1.
[9] B. Razavi, “Design of Integrated Circuit for Optical Communications,” McGraw-Hill Inc., International Edition, 2003.
[10] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. of Solid-State Circuit, vol. 31, no. 3, pp. 331-343, Mar. 1996.
[11] R. E. Best, “Phase-Locked Loops: Design, Simulation and Applications,” New York: McGraw-Hill, Fourth Ed., 1999.
[12] C.–H. Park et al., ”A low-noise, 900MHz VCO in 0.6μm CMOS,” IEEE J. of Solid-State Circuits, vol. 34, no. 5, pp. 586-591, May 1999.
[13] J. G. Maneatis and M. A. Horowitz, ”Precise delay generation using coupled oscillators,” IEEE Journal of Solid-State Circuits, vol. 28, no. 12, pp. 1273-1282, Dec. 1993.
[14] B. Razavi, “Design of Integrated Circuit for Optical Communications,” McGraw-Hill Inc., International Edition, 2003
[15] J. Savoj and B. Razavi, “A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector,” IEEE J. of Solid-State Circuits, vol. 36, no. 5, pp. 761-767, May 2001
[16] Y. Miki, T. Saito, and H. Yamashita, et al. “A 50-mW/ch 2.5-Gb/s/ch data recovery circuit for the SFI-5 interface with digital eye-tracking,” IEEE J. of Solid-State Circuits, vol. 39, no. 4, pp. 613-621, Apr. 2004
[17] J. Kim and D.-K. Jeong, “Multi-gigabit-rate clock and data recovery
based on blind oversapmling,” IEEE Communications Magazine, vol. 41,
pp. 68-74, Dec. 2003.
[18] G. M. Yin, F. O. Eynde, and W. Sansen, “A high-speed CMOS comparator with 8-b resolution,” IEEE J. of Solid-State Circuits, vol. 27, no. 2, pp. 208-211, Feb. 1992.
[19] S. Sidiropoulos and M. A. Horowitz, “A semidigital dual delay-locked loop,” IEEE J. of Solid-State Circuits, vol. 32, no. 11, pp. 1683-1692, Nov. 1997.
[20] M. M. Green, “CMOS design techniques for 10 Gb/s optical transceivers,” IEEE Symp. on VLSl Circuits, pp. 209-212, May 2003.
[21] Anritsu “Ultra-Wideband Bias Tees Models K251 and V251,” Revision A, Jun. 2000.
[22] Y. Amamiya, S. Kaeriyama, et al. “A 40Gb/s multi-data-rate CMOS transceiver chipset with SFI-5 interface for optical transmission systems,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 358-359, 359a.
[23] P. Larsson, “A 2-1600 MHz CMOS clock recovery PLL with low-Vdd capability,” IEEE J. of Solid-State Circuits, vol. 34, no. 12, pp. 1951-1960, Dec. 1999.
[24] J. Lee, K. S. Kundert, and B. Razavi, “Analisis and modeling of bang-bang clock and data recovery circuits,“ IEEE J. of Solid-State Circuits, vol. 39, pp. 1571-1580, Sep. 2004.
[25] M. Y. He and J. Poulton, “A CMOS mixed-signal clock and data recovery circuit for OIF CEI-6G+ backplane transceiver,” IEEE J. of Solid-State Circuits, vol. 41, no. 3, pp. 597-606, Mar. 2006.
[26] M. van Ierssel, A. Sheikholeslami, H. Tamura, and W.W. Walker, “A 3.2 Gb/s CDR using semi-blind oversampling to achieve high jitter yolerance,“ IEEE J. of Solid-State Circuits, vol. 42, no. 10, pp. 2224-2234, Oct. 2007.
[27] P. K. Hanumol, G. Y. Wei, and U. K. Moon, “A wide-tracking range clock and data recovery circuit,” IEEE J. of Solid-State Circuits, vol. 43, no. 2, pp. 425-439, Feb. 2008.
[28] Y.-S. Seo, J.-W. Lee, H.-J.g Kim, C. Yoo, J.-J. Lee, and C.-S. Jeong, “A 5-Gbit/s clock and data recovery circuit with 1/8-rate linear phase detector in 0.18μm CMOS technology,” IEEE Trans. on Circuits and Systems II, vol. 56, pp. 6-10, Jan. 2009.
[29] Song , Jun-Yong Kwon , Oh-Kyong, “Clock- and data-recovery circuit with independently controlled eye-tracking loop for high-speed graphic DRAMs,” IEEE Trans. on Circuits and Systems II, vol. 58, no. 7 ,pp. 422-426, Jul. 2011.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2011-11-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明